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Abstract

Behavioral robustness at antibody and immune network levels is discussed. 
The robustness of the immune response that drives an autonomous mobile robot 
is examined with computational experiments in the trajectory generation context 
in unknown environments. The immune response is met based on the immune 
network metaphor for different low-level behaviors coordination. These behaviors 
are activated when a robot sense the appropriate conditions in the environment 
in relation to the network current state. Results are obtained over case studies 
in computer simulation as well as in laboratory experiments with a Khepera II 
microrobot, and also when such an immune response is externally perturbed 
at network or low-level behavioral modules for behavioral robustness. Results 
indicate that robust behavior and immune responses relate to the coupling between 
behavioral modules that are selectively engaged with the environment based on 
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immune response. The importance of results is that such a demonstration, because of 
the simplicity, leads discussions on a dynamical systems perspective of behavioral 
robustness in artificial immune systems that goes beyond the isolated immune 
network response, but the antibody self-response with implications on bio-inspired 
systems research. Challenges and limitations of the proposed approach are also 
identified for future studies.

Index Terms: Bio-Inspired Immune-Based Systems; Complex Adaptive Systems; 
Behavior-Based Robotics; Autonomous Mobile Robot Control.
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I. Introduction

One of the unanswered questions facing scientists since von Neumann (1956) 
noted the complexity of such a problem is ‘the synthesis of reliable organisms from 
unreliable components’. Reliability in this context refers to the ability of artificial or 
biological organisms to maintain its capacities (functionalities) in normal situation, 
as well as under unexpected internal or external factors (or perturbations), which 
associates to biological robustness research [16]. Despite the lack of a formal 
definition, robustness usually refers to the continuation of function in the presence of 
perturbations [15][16][17]. Robustness is a systemic property commonly attributed 
to living organisms [20][2].

Studies in complex adaptive systems, neuroscience, and systems biology 
generally propose organism-centred accounts of robustness. However, the 
partition between organism and environment is not always helpful for thinking 
on organisms as ‘highly-interdependent’. This is because the division focuses 
only on one-third of the potential behavioral interactions between internal 
control systems, body, and environment, giving special emphasis on the former 
component (e.g. internal control mechanisms, brains, or nervous systems). 
In fact, internal properties like modularity, decoupling, and redundancy are 
conventionally thought to be necessary for robustness in systems biology [17]. 
Structural properties like these may be required to support systemic functionality 
to certain perturbations between internal control systems and body, but they 
do not in themselves ‘ensure’ robust traits (see [15][17]) for complementary 
discussions). As an example of this last point, neural network models have been 
used to explore how modularity can lead to more efficient task management [3]
[4]. Despite recognized robust properties of most modular neural networks to 
noisy data [3], a considerably high amount of noise still reduces drastically their 
filtering capacity. Another example relates to the immune systems metaphor, in 
which immune robust coordination cannot be understood as the work of a general 
coordination solver capable of dealing with a variety of situations (i.e. antigens). 
However, this robust coordination can be understood as the result of highly 
individual problem solvers with the capacity for robust behavior based on self-
training history of interactions with the environment (i.e. antigens). Therefore, is 
it adequate to see robustness as internally generated in immune-based systems? 

Answers to what is required for robustness at behavioral level (behavioral 
robustness) could guide better scientific descriptions of habits, coherent experience, 
and adaptation to changing environments, which could also beneficiate to bio-
inspired systems research. This will follow a small step in the understanding of how 
operates the two great complex adaptive biological systems that humans have to 
deal with the diverse world that surrounds us. These systems are the central nervous 
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system, where the brain is the main ‘component’, and the immune system, which 
operates below the level of consciousness as a relational phenomenon. 

This article promotes that only understanding organism-environment coupling, 
behavioral sciences and researchers in bio-inspired immune systems in situated and 
embodied organisms can understand how immune idealizations control organisms’ 
movements for robust traits. Thus, it is possible to better understand what goes 
wrong after organism failures or damage in artificial (or eventually biological) 
contexts, and to develop better ways to deal with associated outcomes. 

This article provides experiments on the autonomous navigation of robots 
through different computational simulations and physical robotic configurations 
(see also [9]). After obtaining the elemental traits for navigation tasks based on 
the Evolutionary Robotics paradigm (see [8]), we evaluated an immune based 
coordination model of these behaviors. The importance to develop an AIS 
coordination based on robust low-level behaviors is relevant to be analyzed despite 
the fact that immune coordination is robust in itself if it is well implemented. 
The emergent global behavior in our experiments not only has demonstrated its 
viability for solving robot’s navigation, but also its robustness. After analyzing 
the performance of behavioral coordination under the effects of sensorimotor 
perturbations, in fact, it is when we analyze robustness against environmental 
perturbations of the proposed behavioral coordination. 

The development of low-level behaviors cannot be considered as a minor problem 
in behavior-based coordination (e.g. immune coordination) as well as the set of 
contingencies that complement them, because the interaction between low-level 
modules determines global traits in our model. This is especially so in the case of 
sensorimotor control in physical scenarios because low-level behaviors are thought to 
be suited for dealing with physical environments to obtain the expected performance 
(i.e., autonomous navigations in unknown, but semi-structured environments). 

By limiting experimental analyses to concrete case studies, this article highlights 
behavioral robustness as a dynamical process in immune-based models, being in 
any case certainly incomplete if we do not focus on engaged organism-environment 
dynamics. In fact, the described studies show us that behavioral robustness is 
better understood in the context of dynamical couplings, not in terms of immune 
mechanisms (i.e. ‘ensuring’ immune network response). 

II. Related works

During the last decade, several works have been done over the behavior 
coordination in robots that use bio-inspired models, many of them inspired in the 
immune system [18][5][14][21][22]. The guidance and control systems (GCS) of 
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these robots may be associated to the concept of an ‘organism’, with the ability 
to detect situations in the robot’s surroundings and then react against them. The 
information about the environment that is coming from sensors is associated 
with ‘antigens’, to be classified by the organism. Such classification is carried 
out by an ‘antibody network’. When an antigen is detected, a response from the 
immune system (in this case an artificial immune system, or AIS) is generated. 
This response defines a particular action of the organisms in its environment. In 
this way, a condition-action pair in the GCS is linked to each antigen-antibody 
interaction [5]. Hence, the dynamic of the AIS is responsible of selecting the 
action to be executed in each situation associated to an activated antibody. 

The dynamic for the AIS in the present approach is inspired from [7], where 
the final action decision to be applied to the robot’s actuators is determined by the 
antibody concentration within the organism. Note that this AIS is an adaptive and 
distributed information system. The work presented in this article is also based on 
previous proposals as described by Whitbrook (2005, 2007), while the model of the 
immune network is inspired by the approaches in [21] and [7] (see also [13]). The 
main objective of the present study is referred then to the development of a robust 
GCS that gives priority to secure navigation in unknown environments, advancing 
previous works in immune based control [10].

Next sections are organized as follows. Section III shows the main ideas 
governing the dynamics of AIS and section IV describes the application domain of 
this work. Section V presents experimental results, and finally, some conclusions 
about in sections VI and VII are given. 

III.	Dynamics of the implemented AIS

The process of antibody concentration variation is an essential feature for 
the analyzed behavior coordination and then, for the final trajectory generation. 
The antibody concentration is modeled by a time dependant ordinary differential 
equation. According to antibody concentration, this can stimulate or depress other 
antibodies within the organism [9]. Hence, the highest level of a particular antibody 
concentration determines the action to be done by the robot, also codified in the 
antibody. Then, the most ‘concentrated’ antibody (winner) is selected exclusively 
in each sampling time to take the entire control of the robot. 

In this work, initial values of antibody concentration were set to zero and 
bounded to be included in the interval [0;1]. The concentration of a particular 
antibody depends on: (a) the state of the environment in each sampling time, 
reported by antigens, and (b) the concentration of other antibodies in the AIS. This 
is due to the connections among antibodies, called ‘idiotopes’. As every antibody 
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is linked to a simple behavior, the connectivity pattern allows the appearance of 
more complex (emergent) behaviors [6][21].

														              (1)

														              (2)

The equations (1) and (2) represent the antibody concentration level of i-th 
antibody in the AIS [7]. This concentration is evaluated in the instant t, being N+M 
is the total number of antibodies integrating the AIS; mi, is the affinity between the 
antibody i and a determined antigen; mji is the affinity between the antibody j and 
the antibody i (the stimulation degree); mik is the affinity between the antibodies 
k and i, (the suppression degree); ki represents the natural death coefficient of 
antibody i. Equation (2) is the function employed to set the concentration levels 
for each antibody ai. 

As proposed in [14], in next sections it is evaluated the AIS performance in the 
dimension of the adjustment mechanism, and not regarding innovation (see [18]
[14][21] for a detailed classification). Innovation refers to the system ability to 
include unknown new situations from a generalization of the antibodies network, 
in a process similar to inductive learning. Due to the learning abilities associated 
to the antibodies, stimulation or suppression processes were not considered. Our 
decision is based on the hypothesis that it is more efficient to consider in each 
sampling time the interaction of the robot with its environment to determine 
the selection of the adequate antibody (short term learning), instead of doing 
this selection based on a ‘history of interactions’ (long term learning). In other 
words, this history integration would not allow the AIS to forget opportunely 
previous actions for a particular situation in the environment and then would 
inhibit a reaction for such situation, which is not adequate in physical world for 
our experimental purposes. 

IV.	Description of the application domain

The considered robots had available infrared sensors (Figure 1) to measure 
distances and light intensity, to determine the presence of an approaching goal 
in the face of a light source in the environment. This information is mapped as 
antigens; hence, antigens represented the current state of the environment. The 
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behavior of the robot in response to environmental conditions is analogous to 
external matching between antibodies and antigens. An internal matching between 
antibodies is required as part of the immune response in order to select the most 
appropriate action to perform. 

Figure 2 and Figure 3 show the adopted structure of antigens representing the 
information provided by sensed environmental situations. The representation of 
Figure 2 codifies the robot’s sensor signals regarding the location of objects in 
the environment. The references to elements such as waypoints, pipelines, zones, 
and obstacles is due to a possible application of this approach to the preventive 
maintenance of structures for related project with underwater vehicles, further 
described in [1].

Fig. 1 | Sensors Vi deployment for the 
experimental robot. 

Fig. 2 | Definition of zones for antigen recognition 
based on waypoints, pipe segments, zones, and 
obstacles recognition. 
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Fig. 3 | Definition of zones for antigen 
recognition.

The relationship between sensed information and situations to be recognized 
by the immune control system in each zone defines the incoming signal for the 
immune response. This information is mapped to a binary vector representing the 
presence or absence of recognized situations. These situations are an obstacle in 
the environment, tracking an object (pipeline or wall), or free space around the 
robot. Antigens are then linked to the direction in which the obstacles are located 
(obstacle avoidance task) based on Fig. 2, the light sources to approach (waypoints 
to follow provided by the guidance task), and the distance and direction of the 
tracking objects (tracking task). The possible actions to be performed by the robot 
are: to go forward, to turn left/right or wandering, to avoid obstacle, and to reach 
the objective. These actions may be caused by the simple behaviors of: (1) object 
tracking, (2) object searching and (3) obstacle avoidance. Each one of them is 
supported by a feed-forward artificial neural (ANN) trained with an evolutive 
algorithm as explained in [8] (see also [9]).

V.	 Results

A.	Computer simulation results

Although still far from an exhaustive analysis, several variations of the behavior 
coordination are tested in [9] to analyze the relative appropriateness of the described 
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immune coordination. In this article, we only show a couple of experimental sets 
that support our research hypothesis as explained in the introductory section. 
The environment is unknown for the robot, but structured. The variations under 
study are:

(a) coordination based on the evolution of relationships among simple behavior 
modules, named evolutive coordination introduced in [12]; 

(b) coordination based on the AIS (immune coordination); 
(c) immune coordination of behaviors obtained after introducing Gaussian 

noise in the output of the ANN supporting each simple behavior, like in 
[10][11].

The experiments presented in this section are done over a micro-robot 
model in computer simulation with the capability to move freely in the 
exploration of the environment during a limited time. This maximum time 
is upper bounded by the evolution of 300 generations in the ANN training. 
Experimental settings are similar as the one presented in [14][21][24]. The 
task to be carried out by the robot is to go through the gate A-B in a secure 
way (without collisions), reaching a light source or its neighborhood, as a 
stopping point. Three starting points were set, P0, P1 and P2. This is depicted 
in Figure 4. A record of every case was done, and when they were successful, 
the time in which the task was fulfilled was recorded. After trials, four sets 
of faulty situations were observed: 

(case 1) –	 the robot did not reach the goal but the robot did appropriate 
			   gate passing; 
(case 2) – 	the goal was reached but the robot did not pass through gates AB; 
(case 3) – 	the robot passed through the gate but stopped (stuck) near the gate; 
(case 4) – 	the robot became trapped and could not escape before passing  

		  the gate.

All significant tests were at the 95% confidence level using a t-test. A t-test 
is any statistical hypothesis test in which the test statistic has a Student’s t 
distribution if the null hypothesis is true. Normally distributed values are 
assumed. Thirty (30) experiments are done, 10 from each starting point. Table 1 
and Table 2 summarize the results of these trials. In Table 1, the faulty situations 
are presented, describing the number of occurrence of each one (number of 
failures column), and the percentage of faulty situations over total observed 
ones (% failed trials column).
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Fig. 4 | Experimental settings for the comparative analysis of 
different coordination approaches.

It was found that the performance of the task completion was affected by the 
following parameters: 

D –	the distance between the obstacles and the robot; 
S – 	the measuring scope of the sensors; 
B – 	the previous performance of the simple behaviors employed in obtaining 	

	 the emergent behavior; 
C –	 the coordination approach. 

Table 1: Frequency of failure in robot performance considering 30 experiments from different 
starting positio

Coordination	 Error	 Causes of failures	 % All failed	 % Causes 	
approach	 code	 (Freq.)	 trials	 of failure

Layered-Evolutive	 1	 8	 26.6%	 39.9% 
(ruled-based)	 2	 12	 40.0%	 60.1% 
	 3	 0	 0%	 0% 
	 4	 0	 0%	 0%

AIS (no noisy modules)	 1	 0	 0%	 0% 
	 2	 10	 33.3%	 100% 
	 3	 0	 0%	 0% 
	 4	 0	 0%	 0%

AIS (noisy modules)	 1	 2	 6.6%	 18.1% 
	 2	 9	 30%	 81.9% 
	 3	 0	 0%	 0% 

	 4	 0	 0%	 0%
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Table 1 also shows that immune based coordination of behaviors exhibited the 
lower number of failed cases (fourth column). The robot needed an average of 
96 CPU cycles to reach the objective. By the other side, evolutive coordination 
do not allow the robot to cross the gate A-B with a high success rate due to its 
difficulties to activate in effective time the appropriate behavior. Effectively, 
inhibitory and excitatory links are generated among behavior modules. The 
gains of these links, within the interval [0;1], did not change during experiments 
after evolution. However, with the immune coordination there was a continuous 
adaptation during experiments that took into account the history of the emergent 
behavior. This adaptive capability of coordination compensated any faulty 
performance of simple behaviors. For instance, if some noise was introduced 
in the sensors’ measurements, the immune coordination may activate them in 
the same way by remembering its previous recent activations, solving the loss 
of sensory ability. 

Table 2: Summary of statistics for time (CPU cycles) to reach the goal using the simulator 
considering only successful cases.
 

Coordination	 	 Mean	 	        Standard deviation	 	95% confidence interval

	approach	
		

P0	 P1	 P2	 P0	 P1	 P2	 P0	 P1	 P2

Layered- 
	Evolutive	 185.43	 233.7	 249.7	 27.6	 21.14	 15.1	 [212.01;287.3]	 [159.8; 211]	 [200.1;267.2]

	(ruled-based)

AIS (no noisy	 98.9	 119.	 69.6	 56.	 41.40	 13.38	 [58,5;139.3]	 [90.2;149.4]	 [60;79.2]

	modules)

AIS (noisy	 95.8	 109.2	 65.2	 49.4	 31.	 8.6	 [60.4;131.1]	 [85.4;133]	 [58.6;71.8]

	modules)

B.	Experimental results over the physical robot

The experiments reported in the previous section are repeated with a Khepera 
II microrobot, with the sensor configuration depicted in Figure 1. The environment 
is also the same in terms of structure. Figure 5 shows such a structure with a 
considerable influence of variability in zenith light sources. That influence is 
originated by two zenith light sources (fluorescent) as environmental light, and 
uncontrolled light influence from other light sources in the room (e.g., windows 
and secondary environmental lights). The target during tests is a light source of 60 
Watts (fluorescent) placed on top-right side of the arena. 
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The time to finish the task and the possible reasons for not comply with it, 
are recorded in a similar manner to that described in the previous section. All 
experiments with the physical robot are stopped in the case of detecting a faulty 
situation (i.e. if a collision with one of the internal walls was foreseen). In addition, 
if the robot hit a wall during its internal navigation task, this situation is also 
registered, generating a new error, which is coded as 0 in next Table 3. Thus, error 
conditions for experiments on the real robot are the same as for computer simulation 
experiments, adding only this case 0. The maximum error situations allowed for 
each test from each starting position is 20 for the 30 independent experiments. 

It is also important to note that in the case of the computer simulation tests, 
the robot is allowed to continue his career after a collision occurred, representing 
new opportunities for the robot to correct its actions. This does not occur during 
experiments with physical robots because after such collisions, the experiment is 
stopped and in this way, there is an increment in the failure rate for these experiments. 
This is done to protect the physical integrity of the robot. Hence, during these 
trials, the failure rate is high (52%). Another important cause of failures is due to 
environmental influence on the sensors. The characterization of each sensor reading 
including variability with noise, allowed to significantly decreasing the failure rate. 
For example, two qualitatively identical sensors show differences in their readings 
during experiments with obstacle avoidance, due to light changes. The time elapsed 
for perception and the action is different in both identical sensors. This is the 
reason for also experimenting with the physical robot. Similar differences between 
the performance in computer simulation and the physical robot with real sensors 
are reported in the reference [24]. The results indicate that the failure rate after 
corrections including the variability of sensor reading is then decreased (at 37%). 

Particularly, the obstacle avoidance behaviour, when approaching the sides of the 
internal walls, does not work as expected in comparison with computer simulation 
results. In this situation, the Khepera II robot is too close to the limits of the internal 
walls and got trapped. Internal walls generated shadow cones which do not allow the 
sensors to work properly (please refer to Figure 5). Table 3 summarizes statistics on the 
failure rate during experiments with the physical robot. The results indicate a greater 
number of failures (about 20%) when the robot approached the end of the internal 
walls but not when crossing the gate AB, generating 60% of all the faulty situations. 
There is no significant difference between the simulated and physical tests in terms 
of failure rates and difficulty in completing the task. The average number of actions 
towards the objective within the corridor A-B from all initial positions was of 33% in 
the physical experiments, compared with 59% obtained in the simulation experiments. 

As usually presented in the literature of technological research, computer 
simulation represents physical world idealizations. In the case of robots, in the 
simulated world there are more precise sensorimotor actions. As it is reported, AIS 
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based coordination in physical robots exhibits no significant differences between the 
same computer simulation results. Hence, it might be inferred that this coordination 
is the one that better suits in the physical world. Anyway, to support this claim it is 
still needed a greater number of statistically significant evidence, as well as analysis 
of global stability, or at least convergence of coordination in a non-erratic behaviour. 

Fig. 5 | Experimental settings 
in real confined physical 
environment for testing short-
term goal-seeking problem 
navigation using AIS behavior 
coordination for a Khepera II 
robot.

Table 3: Frequency of Robot Performance Failures using AIS, considering 30 experiments 
from different starting points.

	 Initial 	 Unsuccessful	 Causes of	 % All failed	 % Causes 	
	position	 code	 failures (Freq.)	 trials	 of failure

	 P0	 0	 3	 10%	 20% 
		  1	 0	 0%	 0% 
		  2	 12	 40%	 80% 
		  3	 0	 0%	 0% 
		  4	 0	 0%	 0%

	 P1	 0	 4	 13.3%	 21% 
		  1	 2	 6.6%	 10.5% 
		  2	 10	 33.3%	 52.6% 
		  3	 2	 6.6%	 10.5% 
		  4	 1	 3.3%	 5.3%

	 P2	 0	 4	 13.3%	 21% 
		  1	 0	 0	 0% 
		  2	 11	 37%	 57.8% 
		  3	 2	 6.6%	 10.5% 
		  4	 2	 6.6%	 10.5%
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C.	A comparative fitness analysis of AIS in long-term tests

This section evaluates in computer simulations the immune performance 
obtained in previous experiments based on a specific fitness metrics. We evaluate 
the immune coordination using non-noisy behavioural modules because this 
coordination presented a relatively better performance in comparison the other 
analysed behavioural coordinations that we have evaluated in [9]. 

Five situations are settled for experiments as named in Figure 6 (see figure’s 
caption). Similarly to Ishiguro et al.’s (1996) work, in the following, it is evaluated 
the performance of the AIS coordination only using an adjustment adaptation 
mechanism as explained in previous sections. We allocated the simulated robot 
to perform the same experiments as in Figure 7 (navigation in a labyrinth). The 
following equation describes the fitness function used for the evaluation process.

where lt is the time spent into a light zone over the total time; rz is the amount of 
reached zones over total zones; ss is the time spent in a trapped situation over total 
time; and wt is the time spent as wandering behaviour over total time. Parameters 
α, β, χ and ς are defined for weighing the contribution of each term, but defined as 1 
for every experiment in this section. The higher the fitness is, the better performance 
robots reached. This measure criterion directly increased accordingly the number 
of special zones that the robot approached, and decreased directly with more time 
the robot spends without tracking the line (i.e., performing wandering behaviour 
or becoming trapped). The fitness value is clamped in range [0;1].

Fig. 6 | Mean performance 
(y-axis) against perturbation 
tests of the AIS coordination 
for non-noise behaviors. 
10 independent tests per 
plotted bar. X-axis represents 
performed experiment: test 0: 
control case; test1: sensors 
gain ±5%; test 2: motor gain 
±5%; test 3: random noise in 
affinities (mi) among antibodies 
±50%; test 4: random noise
in antibody concentrations  
(ai) ±50%.
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Figure 6 shows that the fitness measurement of test1 and test2 was considerably 
lower (0.499 and 0.569, in that order) than the one obtained in the control case 
(0.836). The efficiency (avg.) for performing the task in relation to the control 
case is 59%, 68%, 82%, and 87% for test1, test2, test3, and test4, respectively. 
It means that the immune coordination present fragility in experiments against 
sensorimotor perturbations. However, we obtain a considerably high performance 
against structural perturbations in affinities and antibody concentrations (0.692 and 
0.733, respectively). In average, the performance of the immune coordination is 
64% effective for sensorimotor perturbations in relation to control case, while for 
structural perturbations is 85%.

Due to the proposed fitness measurement, terms ss (the time spent in a 
trapped situation over total time) and wt (the time spent as wandering behaviour 
over total time) have obtained a considerable influence in sensorimotor 
perturbation tests. For example, the effect of sensors and motor perturbations 
generate constant errors in movements. This produces that the special tracking 
zones behaviour is lost, or robots actions consume more time in special tracking 
zones as correcting actions for tracking the line. The immune coordination 
approach does not surpass satisfactorily this inconvenience for test1 and 
test2. However, the immune coordination obtains a relative good performance 
in relation to structural perturbations on affinities among antibodies and in 
antibody concentrations (test3 and test4). In general, results of this section 
support that the immune coordination was considerably more sensitive to 
sensorimotor perturbations on low-level behaviours than to perturbations in 
immune coordination of behaviours.

Fig. 7 | Example of tracking 
trajectory generation using 
immune coordination without 
neural and environmental 
noise during tests. Situation 
where the robot tracks 
segments of a line.
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VI. Experimental discussions

From a simulated perspective, we describe in previous sections some 
behavioral analysis of the appropriateness of different immune-based behavior 
coordination over similar behavioral modules. In addition, we evaluated the 
navigation task in unknown environments through physical environments. 
Internal variability in the face of neural noise in behavioral modules during 
the evolutionary process was also analyzed in behavioral tests. In physical 
experiments, behaviors needed to deal against environmental variability (noise) 
that comes into the robot controller through sensorimotor signals (full experiments 
not shown here). This aspect of the work was interesting for a number of reasons. 
Firstly, very little work has been done in literature with AIS coordination that 
relates neurocontrollers focusing on internal variability as perturbations. Our 
experiments demonstrated that AIS could deal with non-reliable components 
in behavioral terms to complete proposed tasks. Secondly, actions in the near 
past not necessarily define future actions in short term, but they restrict the 
set of behaviors to apply. In other words, there exists a higher probability for 
maintaining a pre-stimulus activity (behavior) than behaviors without relation 
to current situation. Finally, the immune coordination of behaviors could deal 
with environmental noise in restricted situations (i.e. arenas). We characterized 
the immune system approach by adapting to environment conditions in short 
and long term. In comparison with the evolutionary coordination approach [8]
[9], which represents a coordination network that can be accomplished with the 
navigation task after evolution [12], the immune coordination was not seriously 
affected during perturbation tests (internal and external). We mainly based this 
capacity for dealing with perturbations on its intrinsic adaptive properties in the 
immune network dynamics. 

Relatively well-tuned behavioral modules affected that performance. Results 
indicated that immune coordination increased the network dynamics performance 
based on behaviors to coordinate, endowing it with additional robustness. We 
understand this as an improved flexibility in the adaptation to new situations. 
The knowledge-based approach implies, however, more effort for discovering 
how to coordinate action-behaviors based on a trial-error process in comparison 
with evolved and immune coordination. In general terms, results show that the 
immune network could deal with an expected robot performance in simple and 
complex tests. The robot was capable of developing all its dedicated tasks, as 
well as it was also capable of maintaining its integrity. Despite satisfactory 
results, further analyses must be carried out to give the robot control additional 
robustness. A more flexible control among behaviors could be beneficial in 
unknown environments. 
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VII. Conclusion

This article presents results of the study in bio-inspired behavior coordination 
from two experimental perspectives: computer simulation and physical robot in 
partially controlled environment tests. The different analysis performed over the 
guidance and control systems (GCS) of an autonomous mobile robot showed 
the feasibility of using immune-based techniques for coordination of simple 
behavior modules. The influence of Gaussian noise in the construction process 
of simple behavior modules was also analyzed and it was demonstrated that AIS 
based coordination was the best to deal with the real environment due to its better 
capability to adapt, even in the presence of such noise (see [9]). 

A first conclusion is that the immune-inspired is a more robust approach for 
behaviors coordination than the evolutive one (see also [12] and [13] for further 
arguments). Effectively, based on the described experimental configuration, this 
last approach is able to yield an emergent behavior, but without the possibility to 
adapt in effective time to the sensorimotor inaccuracies that were not given during 
the evolutionary process. In particular, AIS based coordination was not seriously 
affected by noise. The results suggest that immune-inspired coordination has the 
potential to improve over time the performance of the robot’s emergent behavior. 
The immune coordination of behaviors, in consequence, was in some sense robust to 
maladaptations of isolated behaviors in how they solve a task. If not so, maladapted 
behaviors negatively affected the immune coordination. 

Behaviors were difficult to obtain covering a wide range of changing and 
unknown situations. Ideally, an immune coordination system should be ‘decoupled’ 
then in relation to the task to solve, but only coordinating low-level behaviors that 
were pre-evolved for solving certain tasks. Our implemented immune coordination 
presented robustness in relation to low-level behaviors at different contexts (e.g., 
behaviors under noisy and non-noise evolutionary processes), and in simulated 
and physical experiments. 

Summarizing, one of the main conclusions raised on this work is that the 
performance of the immune coordination (systemic behavior) not only emerges 
from low-level behaviors, but also its dynamics with the environment through 
low-level behaviors also effects the coordination of behavioral modules regarding 
sensorimotor interactions. 

The immune ‘decision’ generating the immune coordination for activating 
low-level behaviors, defines in fact the subsequent systemic states. For example, 
activating the behavior of goal approaching will generate further incoming 
signals associated with sensing that goal in next time steps. This indicates that 
the performance of low-level behaviors is essential to obtain better immune 
performance. This idea however is sometimes given for granted rather than 
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discussed in literature, because the dynamics of the immune response receives 
more interest than the whole set of low- and high-level behaviors.

Finally, experiments showed that AIS based behavior coordination could 
generate safe trajectories for the robot when reaching a target, maintaining its 
physical integrity. Despite the satisfactory results, a further analysis on the relevance 
of these results is still pending, in order to achieve a greater level of robustness 
against disturbances in coordination for real world environments, like underwater 
or open field missions. It is also needed more evidence statistically significant, and 
an analysis of the robot’s global control stability, or at least convergence of the 
coordination in a predictable pattern and adapted to the environment. Only in this 
situation, this technology would be mature to meet the challenge of navigating in 
a completely unknown environment. 
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