Solving Constraint Satisfaction Puzzles with
Constraint Programming

Broderick Crawford!?, Carlos Castro?, Eric Monfroy?, and Nibaldo Rodriguez!

! Pontificia Universidad Catdlica de Valparaiso, PUCV
Av. Brasil 2241, Valparaiso, Chile, 2362807
FirstName.NameQucv.cl
2 Universidad Técnica Federico Santa Marfa, UTFSM
Av. Espana 1680, Valparaiso, Chile, 2390123
FirstName.NameQutfsm.cl

Abstract

Constraint Programming (CP) is a powerful paradigm for solving
Combinatorial Problems (generally issued from Decision Making). In CP,
Enumeration Strategies are crucial for resolution performances. In this work,
we model the known benchmark problems Latin Square, Magic Square and
Sudoku as a Constraint Satisfaction Problems. We solve them with Constraint
Programming comparing the performance of different Variable and Value
Selection Heuristics in its Enumeration phase. The platform used was Mozart!.

Keywords: Constraint Programming, Enumeration Strategies, Variable
Selection Heuristics, Value Selection Heuristics, Combinatorial Problems.

Resumen

La Programacion con Restricciones es un poderoso paradigma para resolver
Problemas Combinatoriales (generalmente utilizados en Toma de Decisiones).
Resolviendo este tipo de problemas, el rendimiento de la Programacién con
Restricciones depende crucialmente de la Estrategia de Enumeracién. En
este trabajo se modelan como Problemas de Satisfaccién de Restricciones
los conocidos problemas benchmark Cuadrados Latinos, Cuadrados Magicos
y Sudoku. Los problemas se resuelven con Programacién con Restricciones
comparando en su Fase de Enumeracoén el rendimiento de diferentes Heuristicas
de Seleccion de Variable y Valor. La implementacién se hizo en Mozart.

Palabras Clave: Programacién con Restricciones, Estrategias de Enu-
meracion, Heuristicas de Seleccion de Variable, Heuristicas de Seleccion de Valor,
Problemas Combinatoriales.

! WWwWWw.mozart-oz.org

1 Introduction

The Constraint Programming (CP) has been defined as a technology of Software
used to describe and solve combinatorial problems [1]. The main idea of this
paradigm is to model a problem by mean of a declaration of variables and
constraints and to find solutions that satisfy all the constraints. Many of
the combinatorial problems focused by CP can be modeled like a Constraint
Satisfaction Problem (CSP), which consist of a sequence of variables X =
21,22, ..., Tn, With its respective domains D = Dy, , D,,, ..., D, , and a finite set
C of constraints restricting the values that the variables can take simultaneously.
The goal is to assign a value to each variable satisfying all the constraints.
The basic mechanism underlying CP to solve a CSP interleaves Constraint
Propagation (network consistency) and Enumeration (distribution or labeling).
In essence, the algorithm increases the efficiency of the search by looking ahead
actively using the constraints to prune the search space. The underlying structure
to the described the CP paradigm is shown in Figure 1.

Variable
Model < Domains

Constraints

Constraint Programming
Propagation

Search Variable Selection

Value Selection

Enumeration {

Fig. 1. Constraint Programming Approach

This work is focused on the Enumeration phase of CP, where the use of
variable and value selection heuristics is critical. A suitable definition and use of
an enumeration strategy can improve the resolution process strongly. We apply to
resolution of puzzles (Magic Square, Latin Square and Sudoku) different variables
and values selection heuristics presented in the literature [2].

2 Resolution Technique

In the resolution of Constraint Satisfaction Problems diverse techniques
can be used, currently they are solved using complete techniques (global
optimization), incomplete techniques (local optimization), and hibridizations
of both techniques. Specifically, the Constraint Programming community
uses a complete approach alternating phases of constraint propagation and
enumeration, where the propagation prunes the search tree by eliminating values
that can not participate in a solution. Enumeration [1] consists of dividing the

original CSP in two smaller CSPs, creating one branch by instantiating a varible
(x = v) and another branch (z # v) for backtracking when the first branch does
not contain any solution. When enumerating two decisions have to be made:
What variable is selected to be instantiated? and What value is assigned to
the selected variable?. In order to support these decisions we use enumeration
strategies.

3 Enumeration Strategy

The enumeration strategies are constituted by variable and value selection
heuristics [2].

3.1 Variable Selection Heuristics

The main idea that exists within the choice of the next variable, is to minimize
the size of the search tree and to ensure that any branch that does not lead
to a solution is pruned as early as possible, this was termed as the ”fail-first”
principle by Haralick and Elliot [3], described as "To succeed, try first where
you are most likely to fail” [4,1]. For variable selection, it is possible to find a
classification according to the moment when the selection order is done.
Static Selection Heuristic: it generates a fixed order of the variables before
initiating the search. Here the variables are always selected in the order
predefined for instantiation.
Dynamic Selection Heuristic: it can change the instantiation order of
the variables dynamically as one advances in the tree search. It is based on
information generated during the search. Here the dynamic and static terms are
used according to the definition given in [4].

In this work we used the following variable selection heuristics:
Minimum Domain Size (MiD): at each enumeration step the domain of
each one of the variables not yet instantiated is analyzed, then the variable with
smaller domain size is selected.
Maximum Domain Size (MaD): the idea of this heuristic is similar to the
previous one, nevertheless in this case it selects the variable with the greater
domain size.
Order Previously Established (Opre): in this static heuristic for magic
squares, selecting first the elements of the main diagonal, after the elements in
the upper triangle of the main diagonal and finally the elements in the lower
triangle of the main diagonal.

3.2 Value Selection Heuristics

In choosing the value, we can try, if it is possible, a value which is likely to lead to
a solution, and so reduce the risk of having to backtrack and try an alternative
value (”succeed-first” principle[4]). In this work we used the following value
selection heuristics:

Smaller Value of the Domain (SVal): this heuristic establishes that the
smallest value of the domain is always chosen.

Greater Value of the Domain (G Val): it is similar to the previous one, but
instead of choosing the smallest element of the domain, the greater element is
selected.

Average Value of the Domain (AVal): this heuristic selects the value of the
domain that is more near to the half of the domain, it calculates the arithmetic
average between the limits (superior and inferior) of the domain of the selected
variable and in case of having a tie the smallest value is selected.
Immediately Greater Value to the Average Value of the Domain
(GAV): this heuristics selects the smaller value of the domain that it is greater
as well to the average value of the domain. Finally, established the heuristic to
use, the enumeration strategies are compound according to Table 1.

S1 = MiD+SVal
S2 = MiD+GVal
S3 = MiD+AVal
Sis = MiD+GAV

S5 = MaD+SVal
Se¢ = MaD-+GVal
S7 = MaD+AVal
Ss = MaD+GAV

S9 = Opre+SVal

S10 = Opre+GVal
S11 = Opre+AVal
S12 = Opre+GAV

Table 1. Enumeration Strategies

4 Description of Problems

4.1 Magic Square

This puzzle consists in finding for a given N an Nx/N matrix such that every
cell of the matrix is a number between 1 and N2, all the cells of the matrix must
to be different, and the sum of the rows, columns, and the two diagonals are
all equal. The mathematical representation used to model the problems has a
variable z;; that represents the value that each cell (4, j) of the matrix can take,
and a variable S for the sum of each row, column and diagonal. Then the CP
model establishes the following constraint:

Vi,je{1,....N} Alldif ferent{z;;}

N
Z.’L’ij =8 Vie {1,...,N}

j=1

N
Zx”— =95 Vje{l,..,N}
=1 N

=1

N
Z TiN—i+1) = 5
=1

The constraints (2) and (3) ensure that the sum of each row and each column
will be equal to S, and the constraints (4) and (5) assure that the sum of each
diagonal will be equal to S.

()

4.2 Latin Square

A Latin Square puzzle of order N is defined as an NxN matrix where all its
elements are numbers between 1 and N with the property that each one of the
N numbers appear exactly once in each row and exactly once in each column of
the matrix. The CP model consists of the following constraints:

Vie{l,...N} Alldif ferent{x;1,Ti2,...,TiN} (6)
Vje{l,..,N} Alldif ferent{x:j, x2;,...,xNn;} (7)
4.3 Sudoku

Sudoku is a puzzle played in a 9x9 matrix (standard sudoku) which, at
the beginning, is partially full. This matrix is composed of 3x3 submatrices
denominated ”regions”. The task is to complete the empty cells so that each
column, row and region contain numbers from 1 to 9 exactly once [5]. The model
used for the representation can be seen like a composition of the models used in
the above puzzles:

Vie{l,...,9} Alldif ferent{x;1, T2, ..., Tio} (8)
Vje{l,..,9} Alldif ferent{x1;,x2;,...,29;} (9)

On the other hand, each cell in regions Sy; with 0 < k,[< 2 must be differ-
ent, which forces to include in the model the following constraint:

Vi, j Alldif ferent{xij, Ti(j+1), Ti(j+2), T(i+1)5> (10)
(1) (41)s L+1) (542) L4255 Li+2) (1) L(i42)(+2))
coni=kx3+1 yj=10%x3+1.
5 Analysis of Results

Each one of the exposed problems were implemented and solved in the platform
Mozart with the eight first strategies listed in Table 1, and additionally the
strategies Sy, ...,S12 were used in the resolution of magic squares puzzles,
because these strategies are constituted by a variable selection heuristic designed
specifically for such problem. Each execution had a time limited to 10 minutes,
not finding results are indicated with the symbol ”-”. The tests conducted allow
to evaluate the performance of the enumeration strategies based on the following
indicators of performance:

Number of Backtracking (B): it shows the amount of bad decisions made
during the search of the solution, that is calculations or decisions executed
without leading to a solution.

Number of Enumerations (E): this metric tells the amount of nodes or spaces
generated to find the solution of the problem, including the good enumerations
that lead to a solution and the bad enumerations that force to backtrack.
Time (t): it measures the required time to solve the problem.

5.1 Searching the First Solution

In general it is possible to appreciate that for small instances the strategies do not
reflect significant differences. Nevertheless when observing the results obtained
for each one of the problems it is possible to see that the performance of the
strategies varies as N increases, this because with the increase of N the size
of the search space grows drastically. On the other hand, when observing the
results obtained it is perceived that the strategies constituted by the heuristic
MiD (Si,...,S4) have better behavior in those instances in which the search
space grows, this in comparison with strategies that are guided by the heuristic
MaD (S5, ...,Ss). Such differences happen mainly because the heuristic MiD
leads as rapidly as possible to an insolvent space, allowing to prune the tree
search. Leading to an insolvent space quickly consists of choosing variables with
few elements in its domain, increasing the probability of failing before generating
a big search tree.

N 3 4 5 10 15
®[E[O[E]E]0]E [6 [0 [E]E)][0[E][E]©
S113]10(9|61]0 (10| 10 0 [10|67| 1 |18|165| 7 | 76
S>| 310 (10 6 | 0 (10| 10 0 [10|67| 1 |18|165] 7 |78
S3| 310 (10 6 | 0 (10| 12 0 [12]70] 2 |18]|163| 5 |67
S4] 310 (10 6 | O (10| 10 0 [11]70| 4 |31]309(138|229
Ss| 3|0 |12/ 8|0 (10| 94 | 77 |16| - | - | -| - | - | -
Sel 310198010094 |77 (15| -1 -|-] - - -
Sz 310 (10| 8 | 0 |10(1644|1625|106| - | - |-| - | - | -
Ss| 310 (10 8 |0 (10136 |21 (12| - |- |-]| -1 -] -

Table 2. Latin Squares: Enumerations (E), Backtracking (B), CPU time (t) in ms.

Observing the results obtained for the magic square problem, one of the
aspects to emphasize is the good performance obtained by the strategies
constituted by the heuristic Opre, particularly using it in combination with value
selection heuristic AVal and GAV, this good behavior reflected in the Table 3,
it is due mainly because the heuristic Opre generates a more effective constraint
propagation, reducing the size of the search space considerably. The reduction of
the search space takes place because at the beginning of the process the variables
chosen are related to a greater number of other variables (elements of the
main diagonal), which produces that when evaluating the levels of consistency
between the variables is eliminated a greater amount of inconsistency, reducing
the space to explore. In order to conclude, it is possible to mention that the
size of the search space has a great incidence in the resolution process, where
his exponential growth makes the process considerably more expensive, this is
possible to appreciate when solving different instances of the same problem (of
course, hypothesis demonstrated in a lot of previous work) With regard to the

N? 9 16 25 49
E)@B)|®)] E) | B) | ¢) | (E) (B) (t) | E) | B) | ®)
Sil4al1 1] 741 | 717 | 30 | 208861 |208827 [12669 | - - -
S2[13] 7 | 1] 1681 | 1655 | 63 [9113251|9113227|505231| - - -
S3| 8| 5|1 2465 | 2449 | 81 | 2187 | 2158 76 |101510/101424|4415
S4|13] 7 | 1| 406 | 384 | 27 | 7061 | 7037 | 452 | 7139 | 7081 | 487
Ss 16| 7 | 1 {45097 | 45043 | 3680 - - - - - -
Se|14] 8 | 1| 681 | 646 | 46 - - - - - -
S7 122110 | 1 (847094|847055(48519| - - - - - -
Ss 123119 | 1 (358775|358772(27115| 557090 | 557608 | 44189 | - - -
So|5|12|0| 49 34 3 | 26475 | 26428 | 1396 - - -
Si0[13] 7 |1] 508 | 491 | 24 | 80761 | 80728 | 5078 - - -
S| 8| 5|11 1323 | 1296 | 56 393 375 21 - - -
Si2/ 13| 71| 791 | 763 | 55 12 1 2 | 82107 | 82047 |6649

Table 3. Magic Squares: Enumerations (E), Backtracking (B), CPU time (t) in ms

S Sa S3 Sy
Source | Degree | (E) | (B) [(0) [®)]B]®] (E) [(B) [©®) |[E[B)]©
SudokuMin| None-1 | 84 | 52 |14 (220[195|21| 1308 | 1283 | 88 |183]|159(26
SudokuMin| None-2 [2836|2815|153|271(249(23(11074|11048(603|124|102{22
The Times| Easy 7 3 [11]17]13 |11 7 3 10171312
The Times |Medium| 16 6 |11(174/164|/19| 16 6 11 (174|164|26
The Times| Hard 27 |1 16 |11 (24|18 11| 27 16 |11 24|18 |12

Table 4. Sudoku solved with heuristic MiD

Ss Se

Source | Degree | (E) | (B) | (t) | (E) B) | (t)
SudokuMin| None-1 - - - - - -
SudokuMin| None-2 | - -
The Times| Easy [18554|18537|1799(274476|274472|28149
The Times [Medium| - - - |121135]121113|12868
The Times| Hard - - - - - -

Table 5. Sudoku solved with S5 and Sg strategy

S~ Ss

Source | Degree | (E) | (B) | (t) | (E) | (B) | (t)
SudokuMin| None-1 - - - - - -
SudokuMin| None-2 | - - -
The Times| Easy [24195|24169|2582(721773|72155(7484
The Times [Medium| - - - | 88720 |88706|9763
The Times| Hard [93138|93105/9158| - - -

Table 6. Sudoku solved with S7 and Ss strategy

resolution of Sudoku [5], different published instances have been used from The
Times? and Minimum Sudoku page®.

In Table 4, Table 5 and Table 6 we show the source from where puzzles were
obtained, the degree (difficulty level), the heuristic used to solve each instance
and the different measured indicators of performance during the execution of
the tests. Although some authors say that the amount of numbers given initially
does not have incidence in the degree of difficulty of Sudoku, the results obtained
here show bad results with 17 numbers in comparison with the other cases (easy,
medium and hard), where the amount of numbers given initially is greater 25.

6 Conclusions

In this work we showed that variable and value selection heuristics influence the
efficiency in the resolution of combinatorial problems. The efficiency of resolution
was measured on the basis of performance indicators. The work included the
modeling and resolution of classic puzzles (Magic Square, Latin Square and
Sudoku) in Mozart. The possibility to obtain better results in the search process
was showed using suitable criteria of selection of variables and values. In fact, to
select a variable in a search process implies to determine the descending nodes
of the present space that have a solution. It is very important to detect when
the descending nodes are not in a solution, because in this way we avoided to do
unnecessary calculations that force to backtracking. Due to the above reasoning
the heuristic selecting the variable with minimum domain size (MiD) presents a
better behavior in comparison with the other strategies, because MiD bets by the
variable going quickly towards an insolvent space avoiding a priori unnecessary
calculations. We showed that the resolution possibilities of a certain problem
depends on the search space size, it is possible to be appreciated when observing
the differences generated in the results obtained in the resolution of different
instances of the same problem.

References

1. Apt, K.: Principles of constraint programming (2003)

2. Monfroy, E., Castro, C., Crawford, B.: Adaptive enumeration strategies and
metabacktracks for constraint solving. In Yakhno, T.M., Neuhold, E.J., eds.:
ADVIS. Volume 4243 of Lecture Notes in Computer Science., Springer (2006) 354
363

3. Haralick, R., Elliot, G.: Increasing tree search efficiency for constraint satisfaction
problems. Artificial Intelligence 14 (1980) 263 — 313

4. Smith, B.: Succeed-first or Fail-first: A Case Study in Variable and Value Ordering.
Technical Report 96.26 (1996)

5. Simonis, H.: Sudoku as a constraint problem. In Hnich, B., Prosser, P., Smith, B.,
eds.: Proc. 4th Int. Works. Modelling and Reformulating Constraint Satisfaction
Problems. (2005) 13-27

2 http://entertainment.timesonline.co.uk
3 http:/ /people.csse.uwa.edu.au/gordon /sudokumin.php

