Repositorio de la Universidad de Palermo

Wavelet Denoising Based Multivariate Polynomial For Anchovy Catches Forecasting

Mostrar el registro sencillo del ítem

dc.contributor.author Rodriguez, Nibaldo
dc.contributor.author Cabrera, Guillermo
dc.date.accessioned 2009-09-17T19:27:08Z
dc.date.available 2009-09-17T19:27:08Z
dc.date.issued 2009-09-17T19:27:08Z
dc.identifier.isbn 978-987-24967-3-9
dc.identifier.uri http://hdl.handle.net/10226/475
dc.description.abstract In this paprer, a multivariate polynomial (MP) combined with denoising techniques is proposed to forecast 1-month ahead monthly anchovy catches in the north area of Chile. The anchovy catches data is denoised by using discrete stationary wavelet transform and then appropriate is used as inputs to the MP. The MP's parameters are estimated using the penalized least square (LS) method and the performance evaluation of the proposed forecaster showed that a 98% of the explained variance was captured with a reduced parsimony. en
dc.language.iso en en
dc.relation.ispartofseries Rodriguez, N. y Cabrera, G., (2009, julio). Wavelet Denoising Based Multivariate Polynomial For Anchovy Catches Forecasting. Trabajo presentado en el Congreso de Inteligencia Computacional Aplicada (CICA), realizado en Buenos Aires del 23 al 24 de julio de 2009.
dc.subject Forecasting en
dc.subject multivariate polynomial en
dc.subject wavelet transform en
dc.title Wavelet Denoising Based Multivariate Polynomial For Anchovy Catches Forecasting en
dc.type Article en


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

Buscar en DSpace


Búsqueda avanzada

Listar

Mi cuenta