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Abstract 
The software agents are programs that can perceive from their environment and they act to reach their design goals. 
In most cases the selected agent architecture determines its behaviour in response to different problem states. 
However, there are some problem domains in which it is desirable that the agent learns a good action execution 
policy by interacting with its environment. This kind of learning is called Reinforcement Learning (RL) and is 
useful in the process control area. Given a problem state, the agent selects the adequate action to do and receives an 
immediate reward. Then it actualizes its estimations about every action and, after a certain period of time, the agent 
learns which the best action to execute is. Most RL algorithms execute simple actions even if two o more can be 
executed. This work involves the use of RL algorithms to find an optimal policy in a gridworld problem and 
proposes a mechanism to combine actions of different types.  
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Resumen 
Los agentes de software son programas que pueden percibir de su entorno y actuar para alcanzar sus objetivos de 
diseño. En la mayoría de los casos la selección de una arquitectura de agente en  particular determina el 
comportamiento como respuesta a los diferentes estados del problema. Sin embargo, existen algunos dominios de 
problema en los cuales es deseable que el agente aprenda una buena política de ejecución de acciones mediante la 
interacción con su entorno. Esta clase de aprendizaje se conoce coma Aprendizaje por Refuerzo (o Reinforcement 
Learning) y es muy utilizado en el área de control de procesos. Dado un estado del problema, el agente selecciona la 
acción adecuada y recibe una recompensa inmediatamente. Luego, actualiza sus estimaciones acerca de cada acción 
y, después de cierto tiempo, aprende cual es la mejor acción a ejecutar. La mayoría de los algoritmos de aprendizaje 
por refuerzo ejecutan acciones simples aunque varias estén en condiciones de ser utilizadas. En este trabajo se utiliza 
aprendizaje por refuerzo para encontrar una política óptima en un problema de grid y propone también un 
mecanismo para combinar acciones de distinto tipo. 

Palabras Claves: Aprendizaje por Refuerzo, Combinación de Acciones, SARSA, Política Óptima. 

1. Introduction 
By using Reinforcement Learning (RL) techniques, an agent interacts with its environment to achieve a goal. In RL, 
the agent attempts to reach the objective based on learning by trial-and-error [8], [14]. The agent must learn what 
and how to do to optimally achieve its goal through mapping situations to actions [8]. To reach the optimal solution, 
it is necessary to maximize a numerical reward signal. The agent must discover by itself what action to take so as to 
maximize the reward signal. The action that is taken by the agent affects their status and not only does it have 
immediate reward but also through subsequent actions [8], [14].  
There are two basic characteristics of RL, trial-and-error and RL delayed reward. The agent must be able to learn 
from delayed reinforcement in a long sequence of actions, receiving insignificant reinforcement at the beginning of 
interaction, and finally arrive at the state with high reward [14], [15]. 
The goal of RL is to program agents that learn by reward and punishment (negative reward), being needless to 
specify how the task is made [8]. 
This kind of learning performed by RL is unsupervised because the agent learns by himself and it is not necessary to 
include input-output pairs provided by an external expert, such as Artificial Neural Network (ANN) methods [8]. In 
unsupervised learning the agent is not told what action to take to achieve the best rewards over time. Here, it is 
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necessary for the agent to acquire useful experience about the possible system states, actions, transitions between 
states and rewards to operate optimally and so achieve the goal. To do this, the agent must exploit what is already 
known to obtain a reward, but should also explore to make a better selection of actions in the future [14]. The 
problems with delayed reinforcement are well modeled with Markov Decision Processes [14]. Formally, the model 
consists of: 

• S, a discrete set of environment states. 
• A, a discrete set of agent actions. 
• A reward function ܴ: ՜ ܣ ݔ ܵ  Ը [S] or set of scalar reinforcement signal {0,1} or real numbers. 
• A state transition function  ܴ: ՜ ܣ ݔ ܵ  ሺܵሻ  is the probability distribution overߨ  ሺܵሻ , where a member ofߨ 

the set S. It maps states to probabilities, i.e. ܶሺݏ, ܽ,  ሻ  is a probability of making a transition from the state ݏ
s to s’ applying an action. 

The agent's job consists of finding a policy ߨ, mapping states to actions to maximize the reward of long-term 
reinforcement. In general, the environment is non deterministic, that is, taking the same action in the same state on 
two different times may result in a different next state and / or different reinforcement values [8]. It is assumed that 
the environment is stationary, that is, the probabilities of making a transition state or receiving a specific 
reinforcement signal do not change over time. There are also non-stationary environments to build the theoretical 
system of learning, but they are not focused on this paper. Specially, Artificial Intelligence makes search algorithms 
where the trajectory from initial state to goal problem through states graphic is achieved. The reinforcement learning 
paradigm described has been successfully implemented for many well-defined problems such as games theory [2], 
[6]; robotics [1], [13]; scheduling [9], [10], [11], [16]; telecommunications [3], [12], elevators controls [4], etc.  
RL algorithms find an optimal policy to execute actions, and sometimes, several ones can be executed in a state. In 
this paper an alternative to combine actions in a gridworld problem is presented. In section 2 the problem 
description is made. RL SARSA algorithm and actions combination method are described in section 3. In section 4 
simulations and results are showed, and finally, in section 5, a discussion about some topics and future work are 
presented.  

2. Problem Description 
To test the actions combination algorithm a gridworld problem is used. The problem consists of a 10x10 grid 
divided into two parts. Each one which represents an inclined surface as showed in Figure 1. The agent (A) must go 
from start (S) to goal (G) across the grid without falling outside. The inclined surfaces involve additional trouble for 
the agent, because it must vary the velocity for ascendant and descendant cases. The state set is specified through the 
following variables: 

ܵ ൌ ሼݏ݋ܲݔ, ,ݏ݋ܲݕ ,ݎ݅ܦݐܿܽ  ሽ        (1)݈ܸ݁ݐܿܽ

where: 
xPos is the grid row subindex (1≤xPos≤10); 
yPos is the grid column subindex (1≤yPos≤10); 
actDir is the agent’s direction (with actDir={up,left,down,right}); 
actVel is the agent’s velocity (with actVel={stop,low,medium,high}). 

 
Figure 1. Gridworld Environment. 

The agent can use the following six actions: 

ܣ ൌ ሼ݉ݎ݅ܦ, ,ݐ݂݁ܮ݊ݎݑݐ ,ݐ݄ܴ݃݅݊ݎݑݐ ܸ݈݉݁, ,݈݁ܿܿܣ  ሽ     (2)݈݁ܿܽ݁ܦ

where: 
 ;is to maintain direction (this causes a reduction in velocity) ݎ݅ܦ݉
 ;is turned to the left  (this causes a reduction in velocity) ݐ݂݁ܮ݊ݎݑݐ
 ;is turned to the right  (this causes a reduction in velocity) ݐ݄ܴ݃݅݊ݎݑݐ
ܸ݈݉݁ is to maintain velocity (this makes the agent turn to the left); 
 ;is to increment velocity (this makes the agent turn to the left) ݈݁ܿܿܣ
 .is to decrement velocity (this makes the agent turn to the left) ݈݁ܿܽ݁ܦ
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The environment rules describe the agent movements under the following conditions: 
a) for horizontal movements (left or right), 

(1) if actVel is stop then agent advances 0 positions; 
(2) if actVel is low then agent advances 1 position; 
(3) if actVel is medium then agent advances 2 positions; 
(4) if actVel is high then agent advances 3 positions; 

b) for vertical movements (up or down in coincidence with inclination) 
(1) if ݈ܸܽܿ݁ݐ is ݌݋ݐݏ then agent advances 0 positions; 
(2) if ݈ܸܽܿ݁ݐ is ݈ݓ݋ then agent advances 1 position; 
(3) if ݈ܸܽܿ݁ݐ is ݉݁݀݅݉ݑ then agent advances 3 positions; 
(4) if ݈ܸܽܿ݁ݐ is ݄݄݅݃ then agent advances 4 positions; 

c) for vertical movements (up or down in opposite with inclination) 
(1) if actVel is stop then agent advances 0 positions; 
(2) if actVel is low then agent advances 1 position; 
(3) if actVel is medium then agent advances 1 positions; 
(4) if actVel is high then agent advances 2 positions; 

 
The agent selects and executes an action (in time step t) and receives the immediate reward rt given to: 

a) If agent falls out of  the grid then ݎ௧ ൌ െ5; 
b) If agent reaches the goal state (G) then ݎ௧ ൌ ൅20; 
c) ݎ௧ ൌ െ1 in other case (this negative reward is used to find a fast solution in time steps). 

 
Considering the agent position, direction and velocity, this problem has 1600 distinct states; for that it is necessary 
to use an efficient policy in order to select actions correctly.  

3. Actions Combination 
Under the conditions described above, given a state st, the agent selects an action at, receives a reward rt+1 and finds 
itself in a new state st+1. In order to solve the described gridworld problem, SARSA [14] algorithm is used. In this 
case the agent has estimated values of every possible action to execute for each state: 

ܳሺݏ, ܽሻ           (3) 

where: 
ݏ א ܵ is the environment state; 
ܽ א  .is the selected action ܣ
The estimated values actualization is made by using: 

ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ݎሾߙ ൅ ,′ݏሺܳߛ ܽ′ሻ െ ܳሺݏ, ܽሻሿ      (4) 

where: 
′ݏ א ܵ is the next state; 
ܽ′ א  ;′ݏ is the selected action state ܣ
 ;is the obtained reward ݎ
 ;is the learning rate ߙ
 .is the discount factor ߛ
 
The SARSA behavior is showed in Algorithm 1 [14]. In line 1 ܳሺݏ, ܽሻ matrix is initialized with zeros because this 
allows improvement of the initial exploration of unknown states. In line 3 the initialization of ݏ is made at random, 
then an action ܽ from ݏ is selected using ߝ-greedy policy. For every step of episode (lines 5-10), the selected action 
ܽ is executed, the reward ݎ and next state ݏ’ are observed and used to update the ܳሺݏ, ܽሻ matrix. 

Algorithm 1. SARSA Algorithm. 
1. Initialize ܳሺݏ, ܽሻ with zeros. 
2. Repeat in each episode: 
3.  Initialize ݏ 
4.  Choose ܽ from ݏ using policy derived from ܳ 
5.  Repeat for each step of episode: 
6.   Take action ܽ, observe ݎ,  ’ݏ
7.   Choose ܽ’ from ݏ’ using policy derived from ܳ 
8.   ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ݎሾߙ ൅ , ݏሺܳߛ ܽ ሻ െ ܳሺݏ, ܽሻሿ 
ݏ   .9 ՚ ;ᇱݏ ܽ ՚ ܽԢ 
10. Until ݏ is terminal 

By using SARSA algorithm, the agent selects just one action in actual state and, in many domains, this is sufficient 
to find an adequate action execution policy. Nevertheless, actions combination can help to find alternative solutions 
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provided by two or more actions at the same time. Normally, action combination constantly occurs in real life, for 
example when a person learns the relationship between velocity and direction driving a car. For combination, a 
simple method is proposed: start the learning process with basic actions and, incrementally, create new ones using 
actions which have better values of ܳሺݏ, ܽሻ matrix. Then, new actions are added to the basic actions and they are 
available to be selected.  
In Algorithm 2 the actions combination process can be observed. After updating ܳሺݏ, ܽሻ matrix and new state 
assignation (lines 9, 10), the action combination with low probability ߴ is realized. In line 11 two actions from basic 
set of actions are selected by using softmax algorithm [14]. Softmax algorithm uses a Gibbs distribution: 

ሻܽ ݊݋݅ݐܿܽ ݐ݈ܿ݁݁ݏሺ݌ ൌ ௘ೂ೟ሺೞ,ೌሻ/ഓ

∑ ௘ೂ೟ሺೞ,್ሻ/ഓ೙
್సభ

       (5) 

where: 
݊ is the number of basic actions; 
߬ is the temperature parameter. 
 
Softmax ensures to select best actions according to their ܳሺݏ, ܽሻ value, and by varying the temperature parameter, it 
is possible to obtain a good balance between exploration and exploitation.   
Finally, in lines 12 and 13 a new action is created and added to action set. These new actions are not basic, and they 
cannot be used to create new ones.  

Algorithm 2. SARSA Algorithm with Actions Combination Process. 
1.  Initialize ܳሺݏ, ܽሻ with zeros. 
2.  Repeat in each episode: 
3.   Initialize ݏ 
4.   Choose ܽ from ݏ using policy derived from ܳ 
5.   Repeat for each step of episode: 
6.    Take action ܽ, observe ݎ,  ’ݏ
7.    Choose ܽ’ from ݏ’ using policy derived from ܳ 
8.    ܳሺݏ, ܽሻ ՚ ܳሺݏ, ܽሻ ൅ ݎሾߙ ൅ , ݏሺܳߛ ܽ ሻ െ ܳሺݏ, ܽሻሿ 
ݏ    .9 ՚ ;ᇱݏ ܽ ՚ ܽԢ 
10.   Do action combination with ߴ probability: 
11.    Choose ܽଵ and ܽଶ from basic actions using softmax policy  
12.    Create new action ݊ܽ 
13.    Add ݊ܽ to Action set ܣ  
14.  Until ݏ is terminal 

4. Simulations and Results. 
In order to prove the actions combination process, the simulations were realized using the gridworld problem 
described in section 2. The main goal was to test the agent’s efficiency for combining actions aiming to go from 
start position to goal position in the grid minimizing the time step quantity.  
First, the SARSA algorithm was implemented and tested. Then, the actions combination process was incorporated 
with the following simulation parameters: 

• episodes: 20000; 
• maximum steps for episode: 1000;  
• learning rate 0.3 :ߙ; 
• discount factor 0.9 :ߛ; 
• action combination probability 0.05 :ߴ; 
• temperature parameter ߬: 20 െ ሺ0.01999 ൈ  ;ሻ݌݁ݐݏ ݈ܽݑݐܿܽ
• action selection policy derived from ܳ: ߝ-greedy with ߝ ൌ 0.1. 

 
The implementation of SARSA algorithm initializes the ܳሺݏ, ܽሻ matrix with zeros. The initial state is set randomly; 
this allows improvement of the exploration process and, consequently, the computation time decreases. The agent 
uses the six basic actions (݉ݎ݅ܦ, ,ݐ݂݁ܮ݊ݎݑݐ ,ݐ݄ܴ݃݅݊ݎݑݐ ܸ݈݉݁, ,݈݁ܿܿܣ  to find a solution path, executes the (݈݁ܿܽ݁ܦ
selected action and the state is actualized. The actions combination process uses the same SARSA algorithm, but the 
six basic actions are used to create new ones. The obtained results are summarized in Tables 1 and 2, where the time 
step quantity is shown (GNR stands for main goal not reached).  
As it can be observed in Table 1, at episode 10000 the goal is achieved between 15 and 19 steps. These values are 
maintained for the rest of episodes. From episode 14000 the goal is reached at all times. The same behavior is 
observed in Table 2, but the steps quantity is reduced to values between 9 and 12.  
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Table 1. Steps Quantity using SARSA Algorithm 
  Episode # 

Iteration #  2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
1  GNR GNR GNR GNR GNR GNR 17 19 17 17
2  GNR GNR GNR GNR 16 17 16 17 16 16
3  GNR GNR GNR 16 16 20 17 17 17 20
4  GNR GNR GNR 20 16 16 16 16 17 17
5  GNR GNR GNR GNR 16 16 16 16 16 16
6  GNR GNR GNR 18 19 16 16 18 17 16
7  GNR GNR GNR 22 19 17 17 17 17 17
8  GNR GNR GNR GNR GNR 19 19 19 17 18
9  GNR GNR GNR 15 15 GNR 15 16 19 16

10  GNR GNR GNR GNR GNR 19 17 17 17 17
 
The existence of a variation in quantities of steps for different iterations can be showed in both Tables. This occurs 
because learning and exploration parameters are invariable in the implementations. This can solved decreasing their 
values when time steps increase. 

Table 2. Steps Quantity using SARSA Algorithm with Actions Combination Process 
  Episode # 

Iteration #  2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
1  GNR GNR 9 15 GNR 9 9 9 9 9
2  GNR GNR GNR 14 GNR GNR 10 11 10 10
3  GNR GNR GNR 19 9 10 10 10 10 10
4  GNR GNR 15 10 9 9 9 9 11 9
5  GNR GNR 14 GNR 11 11 10 10 10 11
6  GNR GNR 11 9 13 9 9 9 9 10
7  GNR GNR 13 9 9 10 10 10 10 10
8  GNR GNR GNR 11 11 10 10 12 11 11
9  GNR GNR GNR GNR GNR GNR 9 12 10 9

10  GNR GNR GNR 22 12 9 9 9 9 9
 
In actions combination alternative, the number of ܳሺݏ, ܽሻ matrix entries grows significantly and the required 
computation time is considerably bigger. For this case, the algorithm generates 21 new actions plus 6 basic actions.  

    
Figure 2. Paths Founded Using Basic Actions and Actions Combination. 

 
In Figure 2 the behavior of SARSA (Figure 2 (a)) and SARSA with actions combination (Figure 2 (b)) at ending of 
learning process can be observed. In both cases, the agent finds a path from S to G. However, the difference is that 
the path found by actions combination alternative is more direct. 
For these simulations, none of the combination heuristics were considered; therefore, all combinations of two basic 
actions were realized and tested during the learning process. This might be inadequate when the actions number is 
large and many combinations are not valid or do not produce some state change.   
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5. Discussion and Future Work.  
The actions combination method presented in this work can be implemented in RL algorithms, and it is an 
interesting mechanism to find optimal solutions on control process problems based on known algorithms (for 
example SARSA).  
Actions combination mechanism tends to discover if it is possible to use two o more actions in a particular state 
instead of one. This is an important issue as it is not necessary to program all possible combinations and restrictions 
on problem domain. However, since the number of combinations can grow exponentially, it is possible to implement 
an action clustering process in order to reduce the combinations to actions of different clusters. 
The actions combination mechanism can be improved by using heuristics about particular domain or action-state 
values. Clearly, that implies further complexity in the implementation and, consequently, the computation time 
grows. 
The actions combination heuristics and their improvement are focused on preceding actual work. Also, structural 
abstractions [7], multiple objective problems [5] and [7] are two topics under consideration with the intention of 
improving the algorithms implementation. 
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