Mechanical design of the echinoid test and its biomimetic potentialities

  • Valentina Perricone
  • Francesco Marmo
  • Carla Langella
  • Gabriele Pontillo
  • Luciano Rosati
  • Maria Daniela Candia Carnevali
Palabras clave: Equinoides ; Endoesqueleto ; Ensayo ; Diseño mecánico ; Estructuras de concha ; Morfología funcional ; Biomimética

Resumen

Los equinoides, conocidos como erizos de mar, son invertebrados que pueblan los mares desde finales del Ordovícico. Durante su evolución, se sometieron a una radiación adaptativa relevante que condujo a una variedad de formas y estilos de vida especializados. La mayor parte del éxito evolutivo de los equinoides se debe sin duda al empleo estratégico de su endoesqueleto, con especial referencia a la estructura coherente de la capa de la prueba adaptada para resistir las tensiones bióticas y abióticas relacionadas con los entornos marinos. Esta estructura optimizada, que minimiza tanto la energía como los materiales empleados, también podría representar un modelo ideal para transferir soluciones funcionales bioinspiradas a construcciones de edificios y diferentes sectores industriales. La presente contribución pretende proporcionar una breve descripción de la adaptación morfofuncional estratégica equinoide de la prueba y su potencial en el campo biomimético.

Citas

Boivin, S., Saucède, T., Laffont, R., Steimetz, E., Neige, P. (2018) Diversification rates indicate an early role of adaptive radiations at the origin of modern echinoid fauna. PLoS ONE. 13.

Bonnet, A. (1925). Documents pour servir all’étude des variations chez les echinides. Bulletin de I’Institut Oceanographique de Monaco, 462, 1-28.

Boudouresque, C. F. & Verlaque, M. (2001). Ecology of Paracentrotus lividus. Developments in aquaculture and fisheries science, 32, 177-216.

Boudouresque, C. F.; Verlaque, M.; Azzolina, J. F.; Meinesz, A.; Nedelec, H. y Rico, V. (1989). Evolution des populations de Paracentrotus lividus et d’ Arbacia lixula (Echinoidea) le long d’ un transect permanent a Galeria (Corse). Travaux scientifiques du Parc naturel régional et des réserves naturelles de Corse, 22, 65-82.

Brusca, R. C. & Brusca, G. J. (2003). Invertebrates (No. QL 362. B78 2003). Basingstoke.

Ellers, O. & Telford, M. (1992). Causes and consequences of fluctuating coelomic pressure in sea urchins. The Biological Bulletin, 182(3), 424-434.

Ellers, O., Johnson, A.S., Moberg, P.E. (1998) Structural strengthening of urchin skeletons by collagenous sutural ligaments. The Biological Bulletin, 195(2), 136-144.

Frank, M. B.; Naleway, S. E.; Wirth, T. S.; Jung, J. Y.; Cheung, C. L.; Loera, F. B.; Medina, S.; Sato, K. N.; Taylor, J. R. & McKittrick, J. (2016). A protocol for bioinspired design: A ground sampler based on sea urchin jaws. Journal of Visualized Experiments: JoVE, (110).

Grun, T. B. & Nebelsick, J. H. (2018). Structural design of the minute clypeasteroid echinoid Echinocyamus pusillus. Royal Society Open Science, 5(5), 171323.

Grun, T. B.; Dehkordi, L. K. F.; Schwinn, T.; Sonntag, D.; von Scheven, M.; Bischoff, M., ... & Nebelsick, J. H. (2016). The skeleton of the sand dollar as a biological role model for segmented shells in building construction: a research review. Biomimetic Research for Architecture and Building Construction, 217-242.

Jelínek, F.; Smit, G. & Breedveld, P. (2014). Bioinspired spring-loaded biopsy harvester— experimental prototype design and feasibility tests. Journal of Medical Devices, 8(1).

Knippers, J. & Speck, T. (2012). Design and construction principles in nature and architecture. Bioinspiration & biomimetics, 7(1), 015002. Leigh, S. J.; Bowen, J.; Purssell, C. P.; Covington, J. A.; Billson, D. R. & Hutchins, D. A. (2012).

Rapid manufacture of monolithic micro-actuated forceps inspired by echinoderm pedicellariae. Bioinspiration & biomimetics, 7(4), 044001. Lozano, J.; Galera, J.; López, S.; Turon, X. & Palacin, C. (1995). Biological cycles and recruitment of Paracentrotus lividus (Echinodermata: Echinoidea) in two contrasting habitats. Marine Ecology Progress Series, 122, 179-191.

Magna, R. L.; Gabler, M.; Reichert, S.; Schwinn, T.; Waimer, F.; Menges, A. & Knippers, J. (2013). From nature to fabrication: biomimetic design principles for the production of complex spatial structures. International Journal of Space Structures, 28(1), 27-39.

Mancosu, A. & Nebelsick, J. H. (2020). Tracking biases in the regular echinoid fossil record: The case of Paracentrotus lividus in recent and fossil shallow-water, high-energy environments. PALAEONTOLOGIA ELECTRONICA, 23(2).

Moureaux, C.; Perez-Huerta, A.; Compère, P.; Zhu, W.; Leloup, T.; Cusack, M. & Dubois, P. (2010). Structure, composition and mechanical relations to function in sea urchin spine. Journal of Structural Biology, 170(1), 41-49.

Nebelsick, J. H.; Dynowski, J. F.; Grossmann, J. N. & Tötzke, C. (2015). Echinoderms: hierarchically organized light weight skeletons. In Evolution of lightweight structures (pp. 141-155). Springer, Dordrecht.

Nichols, D. & Currey, J. D. (1968). The secretion, structure and strength of echinoderm calcite. Cell structure and its interpretation, 251-261.

Oldfield, S. C. (1976). Surface ornamentation of the echinoid test and its ecologic significance. Paleobiology, 2, 122-130.

Perricone, V.; Grun, T.; Marmo, F.; Langella, C. & Carnevali, M. D. C. (2020). Constructional design of echinoid endoskeleton: main structural components and their potential for biomimetic applications. Bioinspiration & Biomimetics, 16, 011001.

Philippi, U. & Nachtigall, W. (1996). Functional morphology of regular echinoid tests (Echinodermata, Echinoida): a finite element study. Zoomorphology, 116(1), 35-50.

Presser, V.; Schultheiß, S.; Berthold, C. & Nickel, K. G. (2009). Sea urchin spines as a model-system for permeable, light-weight ceramics with graceful failure behavior. Part I. Mechanical behavior of sea urchin spines under compression. Journal of Bionic Engineering, 6(3), 203-213.

Presser, V.; Schultheiß, S.; Kohler, C.; Berthold, C.; Nickel, K. G.; Vohrer, A., ... & Stegmaier, T. (2011). Lessons from nature for the construction of ceramic cellular materials for superior energy absorption. Advanced engineering materials, 13(11), 1042-1049.

Smith, A. B. (1980a). Stereom microstructure of the echinoid test. Special Papers in Paleontology, 25,1-81.

Smith, A. B. (1980b). The structure and arrangement of echinoid tubercles. Philosophical Transactions of the Royal Society B, 289, 1-54.

Telford, M. (1985). Domes, arches and urchins: the skeletal architecture of echinoids (Echinodermata). Zoomorphology, 105(2), 114-124.

Tsafnat, N.; Gerald, J. D. F.; Le, H. N. & Stachurski, Z. H. (2012). Micromechanics of sea urchin spines. PloS one, 7(9), e44140.

Vogel, S. (2013). Comparative biomechanics: life’s physical world. Princeton University Press.

Wester, T. (2002). Nature teaching structures. International Journal of Space Structures, 17, 135-147.

Wester, T. (1984). Structural order in space: the plate-lattice dualism. Plate Laboratory, Royal Academy of Arts, School of Architecture.

Wester, T. (1990). A geodesic dome-type based on pure plate action. International Journal of Space Structures, 5, 155-167.

Wilkie, I. C. (2005) Mutable collagenous tissue: overview and biotechnological perspective. Progress in Molecular and Subcellular Biology, 39, 221-250

Publicado
2021-12-28
Cómo citar
Perricone, V., Marmo, F., Langella, C., Pontillo, G., Rosati , L., & Carnevali, M. D. C. (2021). Mechanical design of the echinoid test and its biomimetic potentialities. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (149). https://doi.org/10.18682/cdc.vi149.5518

Artículos más leídos del mismo autor/a