
Ciencia y Tecnología, Nº 21, 2021, pp. 7-18 ISSN 1850-0870 7

Exploring parallel formal verification of BIG-DATA systems
(Explorando verificación formal paralela para sistemas
de BIG-DATA)
Fernando Asteasuain1 & Luciana Rodriguez Caldeira2

Campo temático: Ciencias de la Computación.

Resumen

La Ingeniería de Software viene adaptando sus herramientas, métodos y
técnicas para enfrentar los desafíos de los denominados sistemas de BIG-DATA. En
particular, el área de verificación formal ha sido señalada como unas de las áreas de
las que se requiere inmediatas contribuciones. En este trabajo se presentan aspectos
claves buscando adaptar al lenguaje FVS como un lenguaje de verificación formal
para BIG DATA. Por un lado se presenta una demostración formal de la correctitud
del esquema paralelo de FVS. Por otro, se presenta una desafiante validación
empírica del enfoque propuesto utilizando un protocolo relevante a nivel industrial
con un balanceador de carga y comparando varias implementaciones.

Palabras Clave: verificación formal; big data; algoritmos paralelos; model checking.

1 Universidad Nacional de Avellaneda -Centro de Altos Estudio CAETI -UAI. fasteasuain@
undav.edu.ar

2 Universidad Abierta Interamericana- Centro de Altos Estudio CAETI. luciana.rodriguezcaldeira@
alumnos.uai.edu.ar

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp.7-18 ISSN 1850-08708

Asteasuain & Rodriguez Caldeira

Abstract

Software Engineering is trying to adapt its tools, mechanisms and techniques to
cope with the challenges involved when developing BIG DATA software systems.
In particular, formal verification in one of the areas that more urgently is required
to step in. In this work we introduce two crucial aspects aiming to adapt FVS to
cope with BIG Data requirements. For one side, FVS’s parallel algorithm is proved
to be sound and correct. For the other side, we developed a compelling empirical
validation of our approach, employing a communication protocol relevant in the
industrial world within a context of parallel systems, introducing a load-balancer
process and comparing several implementations.

Keywords: formal verification; big data; parallel algorithms; model checking.

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp. 7-18 ISSN 1850-0870 9

Asteasuain & Rodriguez Caldeira

1. Introduction

Big DATA systems and applications are incredible present in everyday life. Huge
amounts of data and information become available every second from diverse sources
like sensors or Internet of Things (IoT)-based systems. The software Engineering
Community has been adapting its traditional tools, methods and techniques in order
to cope with the challenges that BIG DATA systems involve (Hummel, O, et al.
2018, Kumar, V. D., & Alencar, P. 2016, Laigner, R. et all, 2018, Otero, C. E., &
Peter, A. 2014, Camilli,M. 2014, Ding, J., Zhang, D., & Hu, X. H. 2016). Formal
verification of big DATA systems has been pinpointed as one of the main software
engineering’s areas that more urgently need to be explored and adapted. For
example, according to the results presented in (Kumar, V. D., & Alencar, P. 2016) only
two of nearly two hundreds analyzed approaches addressing software engineering
activities regarding BIG DATA systems deal with the formal verification phase.

Some approaches tried to expand traditional tools like model checking involving
techniques as parallel model checking or Cloud-Model checking (Camilli, M.2014).
However, a prior step in the formal verification road has been somehow neglected,
which is the way the behavioral properties to be verified in the model checker are
built and specified (Clarke et.al 2011, Asteasuain, F., Caldeira Rodriguez L., 2020).
In (Asteasuain, F., Caldeira Rodriguez L, 2020) a parallel tool for formal verification
of big DATA systems is presented tackling this issue. The tool is based on a
graphical language called FVS Feather Weight Visual Scenarios (Asteasuain, F., &
Braberman, V. 2017), a simple and yet powerful and expressive language to denote
the expected behavior of the system. We now expand and spread the potential
of that approach by presenting two relevant aspects from the theoretical and
empiric point of view. From the theoretical perspective we introduce a formal proof
of correctness of the main parallel algorithm involved in the approach, a process
which translates FVS graphical scenarios into Büchi automata. From the empirical
perspective we developed a more complex and thorough evaluation of the case of
study, introducing a load-balancer process to manage parallel activities. These two
aspects allow considering FVS as a potential parallel tool for big DATA SYSTEMS.
It is worth noticing that these aspects represent a first step aiming to adapt
FVS to BIG DATA requirements. Once this stage is finished, as a second step
we will apply FVS to formally verify BIG DATA systems per se, a research
line which is included in our short-term future work.

The rest of this paper is structured as follows. Section 1.1 mentions some
observations about the selected case of study. Section 2 briefly presents the FVS
language, and the parallel algorithm to translate FVS into Büchi automata, a required
step to employ FVS in formal verification tools like model checkers. Section 3
presents the proof of correctness of our approach. Section 4 presents the empirical

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp.7-18 ISSN 1850-087010

Asteasuain & Rodriguez Caldeira

evaluation of our approach. Finally, Sections 5 and 6 end this work by mentioning
related and future work and the final conclusions.

1.1 On the selected case of study

Our case study is a relevant protocol with a widespread use in the industrial world:
the MS-NNS protocol, specified in (Asteasuain, F., & Braberman, V. 2017). Although
it is not directly related to big data systems, the space explored to formally verify the
system is similar enough to big data systems (Bellettini, C., Camilli, M., Capra, L.,
& Monga, M. 2016). Since space is an important dimension in BIG DATA systems,
we considered that the analysis and conclusions of the case study are significant for
an initial step in the FVS’s road to formally validate BIG DATA systems. We aim to
continue this trip formally verifying a BIG DATA systems in future work.

2. FVS: Feather Weight Visual Scenarios

In this section we will informally describe the standing features of FVS. The reader
is referred to (Asteasuain, F., & Braberman, V. 2017) for a formal characterization of the
language. FVS is a graphical language based on scenarios. Scenarios are partial order
of events, consisting of points, which are labeled with a logic formula expressing the
possible events occurring at that point, and arrows connecting them. An arrow between
two points indicates precedence. For instance, in Figure 1-(a) A-event precedes B-event.
In Figure 1-b the scenario captures the very next B-event following an A-event, and
not any other B-event. Events labeling an arrow are interpreted as forbidden events
between both points. In Figure 1-c A-event precedes B-event such that C-event does
not occur between them. Finally, FVS features aliasing between points. Scenario in
1-d indicates that a point labeled with A is also labeled with A ^ B. It is worth noticing
that A-event is repeated on the labeling of the second point just because of FVS formal
syntaxes. Aliasing allows the possibility of adding new behavior or renaming existing
behavior by saying two events are equivalent in terms of behavior.

Figure 1. FVS Basic Features

We now introduce the concept of FVS rules. A rule consists of a scenario playing
the role of an antecedent and at least one scenario playing the role of a consequent.
Graphically, the antecedent is shown in black, and consequents in grey.

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp. 7-18 ISSN 1850-0870 11

Asteasuain & Rodriguez Caldeira

As an example, we show two FVS rules modeling a testing technique for
BIG DATA called metamorphic testing (Segura, S., Fraser, G., Sanchez, A. B.,
& Ruiz-Cortés, A. 2016, Ding, J., Zhang, D., & Hu, X. H. 2016) . In few words,
the technique says that similar inputs should behave equivalently and opposite
inputs should have opposite results. In this way, simple tests can be generated. The
FVS rules in Figure 2 show an example in a system analyzing user’s reviews to
distinguish good reviews from bad reviews. These two metamorphic rules apply to
good reviews and they specify that if words are replaced with synonyms the review
should be classified as a good review too. The second rule says that if words are
replaced with antonyms, then the outcome should change and the review should
be classified as a bad one. Similar rules could be added for bad reviews.

word synonym GoodReview
1

1

word antonym badReview
1

1

Figure 2. FVS Rules Example

2.1 A Parallel Algorithm translating FVS Scenarios into Büchi Automata

This section describes the parallel tableau algorithm which translates FVS
scenarios into Büchi automata. We first introduce some basic notions. FVS
scenarios can be defined as morphisms from the antecedent to the consequent. The
algorithm relies on the notion of situations (Asteasuain, F., & Braberman, V. 2017).
A situation represents for a given rule possible combinations of partial matches
from the antecedent to the consequent. Consider the following example in Figure
3, where a rule with two consequents is shown. There are three partial matches for
consequent one, and two for consequent two. Therefore, situation η1 consists of
the three morphisms in the first column () whereas situation η2 consists
of the two morphisms in the second column ().

Figure 3. A situation example

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp.7-18 ISSN 1850-087012

Asteasuain & Rodriguez Caldeira

The sequential algorithm is detailed in (Asteasuain, F., & Braberman, V. 2017).
Starting from the initial state the automata will try to incrementally ‘‘construct’’ the
pattern as events, represented by minterms, occur. For every minterm, the algorithm
computes all possible matchings considering matchings in the antecedent and also
in each consequent. The set situation(S) symbolically represents all the possible
combination of partial matches obtained up to that state from the antecedent to
each consequent.

After a rigorous analysis of it we detected two natural points suitable for
parallelization: the computation of all the possible antecedents and consequents and
tagging all the possible matches and checking whether any consequent has been matched
by the last move. These are tasks that can be easily divided into different nodes to be
realized and then the main algorithm can continue once every one is finished. The
parallel pseudo-code for the parallel algorithm is depicted in Algorithm 1.

1. Algorithm Parallel Succ(S : State,m : minterm) : set of states;

2. Precondition : m ∧ obligations(S) is satisfiable;

3. newSits := ∅;

4. PrepareNodes (N1,N2,…,Nk)

5. istributeAdvancesCalculation((N1,N2,…,Nk),Situations(S))

6. JoinNodes((N1,N2,…,Nk), newSits)

7. trapSituation : ∃η ∈ newSits such that the antecedent is matched and non of the
consequents.

8. PrepareNodes (N1,N2,…,Nk)

9. DistributeGoalMatches((N1,N2,…,Nk),Situations(S))

10. JoinNodes((N1,N2,…,Nk), goalMatched)

11. goalMatched:= (∃j (goalmatched[j])) ∧ (¬trapSituation)

12. return <newSits,GM,Obligations> such that GM goalMatched ∧ GM = true
∃j(goalmatched[j]) ∧ Obligations = Obligations(S)

Algorithm1. Parallel Algorithm’s sketch

Nodes preparation and setup is done in Line 4. Line 5 is in charge of distributing
the task of obtaining the advances of antecedent and consequents in each situation
η among the nodes. In Line 6 all the tasks done by the nodes are united and the
new situations set represented by the variable newSits are obtained. Line 7 analyzes
whether any successor reaches a trap situation, a situation where the antecedent
has been matched, but matching for all consequents is known unfeasible. Parallel
instructions in lines 8 to 11 deal with of goal calculation and verify if any antecedent
has been satisfied. Finally, line 12 returns the expected output.

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp. 7-18 ISSN 1850-0870 13

Asteasuain & Rodriguez Caldeira

Figure 4 exhibits a simplified version of the automaton obtained using the FVS
rules in Figure 2 as input.

Figure 4. FVS-based Automaton

3. Proofs of Correctness of the Parallel Algorithm

In this section we prove that the parallel algorithm shown in Section 2.1 is sound
and correct. We know that the sequential algorithm is sound and correct (Asteasuain,
F., & Braberman, V. 2017). That is, that the set of traces satisfying a given rule R is
equivalent to the language accepted by the automaton B, built by the tableau. More
formally, we know that traces(R) ≡ L(B). Work in (Asteasuain, F., & Braberman, V.
2017) also contains a proof of an important lemma called “Traces-States” relating
the traces of an FVS rule with the states of the automaton. The lemma says that
for every trace t satisfying R such that t leads to a given state S of B, then t can
be “matched” (i.e. a morphism exists) with a situation η ∈ S. The “Traces-States”
lemma plays an important role since it allows going back and forth between traces
of rules and states of the automaton.

We now need to prove that traces(R) ≡ L(B) also holds for the parallel version of
the algorithm. We will achieve this by demonstrating that traces(R) ⊆ L(B) for one
side and that L(B) ⊆ traces(R) for the other side, following a classic equivalence
proof for set’s languages.

Part 1: traces(R) ⊆ L(B): if t ∈ traces(R) → t ∈ L(B). We know that ∀t, t ∈ traces
(R) , t ⊆ L(B) for the sequential algorithm. Given this, and by the “Traces-States”
lemma, we know that for every prefix of t, (where prefix is the usual function that
returns a ordered subset of t: ∀ti, i<=k, where t1,t2,…,tk = t) and a morphism m such
that ti →

mti+1 (ti advances to ti+1 by m) there exists a situation η1 ∈ states (B) such that
η1 →

m η2, where η2 ∈ Succesors(B) for η1. In few words, for every prefix of t if there

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp.7-18 ISSN 1850-087014

Asteasuain & Rodriguez Caldeira

exists a morphism m that makes t to advance recognizing the rule R, then the resulting
situation η2 belongs to the next states of B, advancing both the trace and the automaton.

Given the codification of the parallel algorithm we know there exist a node Ni
such that Ni calculates the successor of η1 (observe instructions in lines 4 and 5 which
distribute in N nodes the calculation of the next states, assigning one node for every
situation). Let Nk (1<=k<=i) be that node. Once node Nk and all the other nodes finish
their work the join instructions in line 6 of Algorithm 1 simply obtain all the successors
by a employing the union operation of all the successors obtained by every node. That
is, ∪i(1<=i<=k) Succ(Ni). Then, given that η2 ∈ Successors (B) for η1 then it can be stated
that η2 ∈∪i(1<=i<=k) Succ(Ni). More simply, for every prefix of t the successor of t will be
present in the next state of the automaton. Finally, since t ∈ traces(R) when t finishes
the automaton will be in a accepting state, concluding that t ⊆ L(B).

If it is the case that t does not advance for any morphism m, then the algorithm
guarantees that η1 will belong to the next state of the automaton since they are
always included by default. This concludes part 1 of the proof.

 Part 2: L(B) ⊆ traces(R): if t ∈ L(B) → t ∈ traces(R). We know that ∀t, t ∈ L(B)
→ t ⊆ traces(R) for the sequential algorithm. For every accepting state S of B there
exist a morphism m, such that m can be matched with a situation η , η ⊆ S , and a
trace t, t ∈ traces(R). By the “Traces-States” lemma we can affirm that for every trace
t leading to an accepting state S of B we can find a morphism m relating a situation η
in S with t. More formally, ∀ t, t ∈ L(B) → ∃ morphism m, such that m can be matched
with t and also with a situation η, η ∈ Situations(S) where S =AcceptingStates(B).

The codification of the parallel algorithm in lines 8,9 and 10 specifies that
deciding whether an state is accepting or not is done in parallel where every node
Ni performs this calculation for every situation ηi . Let Nk be the node that performs
an advance for t. The join instruction in Line 10 in Algorithm 1 simply merges all
the results obtained by every node by a employing the union operation of them.
That is, ∪i(1<=i<=k) Accepting(Ni). Given this, we can conclude that the next state for
t, calculated by Nk will be included in the next state of the automaton.

We can then affirm that for every advance of t the next state will be included in
the automaton. In particular, this holds for all the traces leading t to an accepting
state S of B (those t ∈ L(B)). And this is also true for every prefix of t: if ti →

mti+1
(ti advances to ti+1 by morphism m) then ti+1 is included in the next state of the
automaton. Since this holds for every ti in t=t1,2,…tk. 1<=i<=k, and given that t
∈ L(B) (t leads to an accepting state), t will always satisfy R. In other words, if t ∈
L(B) then t ∈ traces(R). Note that this is also true for those cases where no advance
is produced, since in those cases all of these situations are included in the next step
by default. This concludes part 2 of the proof.

Given that traces(R) ⊆ L(B) and that L(B) ⊆ traces(R) then traces(R) ≡L(B),
which was what we aim to prove.

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp. 7-18 ISSN 1850-0870 15

Asteasuain & Rodriguez Caldeira

4 .Empirical Validation

We implemented three different implementations for the parallel algorithm
delineated in Algorithm 1. In the first one we simply use Java threads. The others
two version handle two parallel libraries for Java: Open MPI (Vega-Gisbert, O.,
Roman, J. E., & Squyres, J. M. 2016) and MPJ Express (Shafi, A., Carpenter, B.,
& Baker, M. 2009).

We employed as case of study the verification of the MS-NNS protocol
specified in (Asteasuain, F., & Braberman, V. 2017). This protocol was introduced
as a lightweight option to provide authenticated and confidential communication
between a server and a client over a TCP connection protocol.

We took the initial empirical validation in (Asteasuain, F., & Rodriguez Caldeira
L. 2020) one step further considering more clients and a load-balancer process,
therefore making the case of study more complex. We considered from 32 to 512
clients together with an environment where the available nodes were not enough to
assign one node for every situation or “for the goal matched calculation”. This was
resolved in two ways: by simulating parallelism through the concurrency provided
by the underlying operating systems and by introducing an extra process playing the
role of a “load-balancer”. This process basically assigns as many tasks as nodes are
available and the rest of the tasks are assigned later as soon as a node become available.

We compared both flavors: with and without the load-balancer process in all of
the versions (threads, OpenMPI and MPJ Express), together with the sequential
version. We considered 32 clients, 64 clients, 128 clients, 256 clients and 512 clients.
The results are shown in Table 1, where the advantages of introducing parallelism
are clearly seen. It can also be noted from Table 1 that not using the load balancer
is better than using it in the first case, caused since the overhead that the load-
balancer imposes outcomes the benefits it provides. However, as the number of
clients’ increases this situation is turned around. Regarding the parallel libraries, the
MPJ Express implementation is slightly better than the Open MPI implementation.

Clients Sequential Threads
with LB

MPJ
with
LB

Open
MPI
with LB

Threads
without
LB

MPJ
without
LB

Open MPI
without
LB

32 1364 sec 280 sec 103 sec 112 sec 200 sec 91 sec 96 sec

64 >10 mins 330 sec 107 sec 115 sec 343 sec 112 sec 120 sec

128 >10 mins 407 sec 140 sec 210 sec 413 sec 180 sec 250 sec

256 >15 mins 503 sec 205 sec 290 sec 568 sec 300 sec 310 sec

512 >22 mins 650 sec 330 sec 414 sec 700 sec 430 sec 470 sec

Table 1: Performance Evaluation Results

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp.7-18 ISSN 1850-087016

Asteasuain & Rodriguez Caldeira

Regarding the execution times, it should be noted that the experiments took into
account not only the execution time of the protocol but also the time to formally
verify it. These algorithms involve non trivial data and structures manipulation
obtaining exponential complexity in some cases (Vardi, M. Y. 2001). The size of
the problem is also important. For the case of study analyzed in this work there
average size of the automata involved was 1863 states and 7522 transitions.

As a final conclusion we can observe that the load-balancer process results in a
valuable asset for the system under analysis. It is worth noticing that in the software
framework for FVS the load-balancer can be activated (or deactivated) by simply
clicking in an option tab when setting the environment for the verification phase.

5. Related and Future Work

Several approaches aim to adapt current formal verification techniques to BIG
DATA systems. In (Matilli, M. 2014, Bellettini, C., Camilli, M., Capra, L., &
Monga, M. 2016) an interesting framework for distributed CTL (computation tree
logic) model checker is presented. We would definitely like to explore in future
work the combination of this advanced tools with our specification language FVS.

Other approaches like (Boukala, M. C., & Petrucci, L. 2012, Brim, L., Yorav,
K., & Žídková, J. 2005, Brassesco,M.V. 2017) provide some tools implementing
different versions of parallel model checking. We believe that a natural continuation
of this work is to provide the automata build by the parallel tableau as the behavioral
properties to be checked in any of the mentioned approaches. In a different direction,
work like (Segura, S., Fraser, G., Sanchez, A. B., & Ruiz-Cortés, A. 2016, Ding,
J., Zhang, D., & Hu, X. H. 2016) employ metamorphic testing as the alternative to
validate BIG DATA results. We would like to extend this notion to formally model
check behavior pursuing the notion of “metamorphic” properties. Our next desired
step is to apply FVS in a BIG DATA system.

6. Conclusions and Observations

In this work two main aspects are presented making FVS a suitable to formally
verify BIG DATA systems. For one side, the parallel algorithm is proved to be sound
and correct. For the other side, we developed a compelling empirical validation,
employing a communication protocol relevant in the industrial world, introducing
a load-balancer process and comparing several implementations.

We are aware there are some limitations in the current status of our approach.
Fundamentally, we need to explore our tool in a BIG DATA system, challenging
the promising results we have obtained so far.

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp. 7-18 ISSN 1850-0870 17

Asteasuain & Rodriguez Caldeira

7. References

Asteasuain, F., & Braberman, V. (2017). Declaratively building behavior by means
of scenario clauses. Requirements Engineering, 22(2), 239-274.

Asteasuain, F., & Rodriguez Caldeira L (2020). A Parallel Tableau Algorithm for
BIG DATA Verification. CACIC 2020.

Bellettini, C., Camilli, M., Capra, L., & Monga, M. (2016). Distributed CTL
model checking using MapReduce: theory and practice. Concurrency and
Computation: Practice and Experience, 28(11), 3025-3041.

Boukala, M. C., & Petrucci, L. (2012). Distributed model-checking and
counterexample search for CTL logic. International Journal of Critical
Computer-Based Systems 3, 3(1-2), 44-59.

Brassesco,M.V. 2017. Síntesis concurrente de controladores para juegos
definidos con objetivos de generalized reactivity(1). Tesis de Licenciatura.,
http://dc.sigedep.exactas.uba.ar/media/academic/grade/thesis/tesis_18.pdf
UBAFCEyN Dpto Computacion

Brim, L., Yorav, K., & Žídková, J. (2005). Assumption-based distribution of
CTL model checking. International Journal on Software Tools for Technology
Transfer, 7(1), 61-73.

Camilli, M. (2014, May). Formal verification problems in a big data world:
towards a mighty synergy. In Companion Proceedings of the 36th International
Conference on Software Engineering (pp. 638-641).

Clarke, E. M., Klieber, W., Nováček, M., & Zuliani, P. (2011, September). Model
checking and the state explosion problem. In LASER Summer School on
Software Engineering (pp. 1-30). Springer, Berlin, Heidelberg.

Ding, J., Zhang, D., & Hu, X. H. (2016, June). A framework for ensuring the
quality of a big data service. In 2016 IEEE International Conference on
Services Computing (SCC) (pp. 82-89). IEEE.

Hummel, O., Eichelberger, H., Giloj, A., Werle, D., & Schmid, K. (2018,
August). A collection of software engineering challenges for big data system
development. In 2018 44th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA) (pp. 362-369). IEEE.

Kumar, V. D., & Alencar, P. (2016, December). Software engineering for big
data projects: Domains, methodologies and gaps. In 2016 IEEE International
Conference on Big Data (Big Data) (pp. 2886-2895). IEEE.

ISSN 2344-9217

Explorando verificación formal paralela para sistemas de BIG-DATA

Ciencia y Tecnología, Nº 21, 2021, pp.7-18 ISSN 1850-087018

Asteasuain & Rodriguez Caldeira

Laigner, R., Kalinowski, M., Lifschitz, S., Monteiro, R. S., & de Oliveira, D.
(2018, August). A systematic mapping of software engineering approaches to
develop big data systems. In 2018 44th Euromicro Conference on Software
Engineering and Advanced Applications (SEAA) (pp. 446-453). IEEE.

Otero, C. E., & Peter, A. (2014). Research directions for engineering big data
analytics software. IEEE Intelligent Systems, 30(1), 13-19.

Segura, S., Fraser, G., Sanchez, A. B., & Ruiz-Cortés, A. (2016). A survey on
metamorphic testing. IEEE Transactions on software engineering, 42(9), 805-
824.

Shafi, A., Carpenter, B., & Baker, M. (2009). Nested parallelism for multi-core
HPC systems using Java. Journal of Parallel and Distributed Computing,
69(6), 532-545.

Vardi, M. Y. (2001, April). Branching vs. linear time: Final showdown. In
International conference on tools and algorithms for the construction and
analysis of systems (pp. 1-22). Springer, Berlin, Heidelberg.

Vega-Gisbert, O., Roman, J. E., & Squyres, J. M. (2016). Design and implementation
of Java bindings in Open MPI. Parallel Computing, 59, 1-20.

ISSN 2344-9217

