Behavioral robustness and the distributed mechanisms hypothesis: lessons from bio-inspired and theoretical biology
Resumen
Theoretical discussions and computational models of bio-inspired embodied and situated agents are presented in this article capturing in simpliied form the dynamical essence of robust and adaptive behavior. The general problem of how dynamical coupling between internal control (brain), body, and environment are exploited in the generation of behavior is particularly analyzed. Using evolutionary algorithms based on Evolutionary Robotics methodology to generate the appropriate neural control, four experiments are introduced to support discussions. The irst model evolves dynamically robust engagements for goal seeking in the presence of neural noise perturbations. The second model develops cognitive-behavioral dependencies for minimal-cognitive behavior in dynamically limited agents. The third one evolves experience-dependent robust behavior in one-legged agent walking. Finally, the last model shows functional dependencies in a mobile-object tracking task. These experiments include a series of structural, sensorimotor, or mutational perturbations, or in the absence of them. Experimental results indicate that neural controls are not suficient to generate robust behavior in each case, suggesting the absence of internal control ‘ensuring’ robustness. The general observation is that coupling dynamics ‘forces’ evolution to behavioral robustness in whatever dynamical form evolution cares to come up with, but relying on behavioral mechanisms that distributes on brain, body, and environment dynamics. Experimental observations provide testable hypothesis that are likely to address in simple organisms in the biological realm, which has some implications for theoretical biology and artiicial systems design.
Descargas
Citas
Alon, U. (2006). An Introduction to Systems Biology: Design Principles of Biological Circuits. Mathematical & Computational Biology. Chapman & Hall.
Arbib, M. (Ed.) (1995). The Handbook of Brain Theory and Neural Networks. The MIT Press.
Beer, R. (1995). A dynamical systems perspective on agent-environment interaction. Artiicial Intelligence 72, 173–215.
Beer, R. (2000). Dynamical approaches to cognitive science. Trends in Cognitive Sciences 4(3), 91-99.
Beer, R. (2003). The dynamics of active categorical perception in an evolved model agent. Adaptive Behavior 11(4), 209–243.
Beer, R. (2004). Autopoiesis and cognition in the game of Life. Artiicial Life
(3), 309-326.
Beer, R. (in press). Dynamical analysis of evolved agents: a premier. In P. Vargas,
E. Di Paolo, I. Harvey, & P. Husbands, The Horizons for Evolutionary Robotics.
MIT Press.
Brooks, R. (1991d). New approaches to robotics. Science 253 (5025), 1227–1232.
Calabretta, R., Noli, S., Parisi, D., & Wagner, G. (1998). Emergence of functional modularity in robots. In From Animals to Animats, (ed. R. Pfeifer B. Blumberg J.-A. Meyer and S. W. Wilson), 497-504. Cambridge, Mass.
Calcott, B. (2010). Wimsatt and the robustness family: Review of Wimsatt’s Re-engineering Philosophy for Limited Beings. Journal Biology and Philosophy: Review Essay, Springer Netherlands. DOI 10.1007/s10539-010-9202-x.
Chiel, H., & Beer, R. (1997). The brain has a body: Adaptive behavior emerges from interactions of nervous system, body and environment. Trends in Neurosciences 20, 553-557.
Félix, M., & Wagner, A. (2008). Robustness and evolution: concepts, insights and challenges from a developmental model system. Heredity 100, 132–140.
Fernandez-Leon, J.A. (2010). Behavioural Robustness and the Distributed Mechanisms Hypothesis. PhD Thesis. University of Sussex, Brighton, United Kingdom.
Fernandez-Leon, J.A. (2010). Evolving experience-dependent robust behaviour in embodied agents. BioSystems, doi:10.1016/j.biosystems.2010.09.010.
Fernandez-Leon, J.A., & Di Paolo, E. (2007). Neural Uncertainty and Sensorimotor Robustness. Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey,
I. and Coutinho, A., editors, Advances in Artiicial Life. Proceedings of the 9th European Conference on Artiicial life ECAL 2007 (pp. 786-795). Berlin/ Heidelberg: Springer.
Fernandez-Leon, J.A., & Di Paolo, E. (2008). Neural noise induces the evolution of robust behaviour by avoiding non-functional bifurcations. Asada, M., Hallam, J.C.T., Meyer, J.-A. and Tani, J., editors, From Animals to Animats 10. 10th International Conference on the Simulation of Adaptive Behavior (pp. 32-41). Springer.
Fernandez-Leon, J.A., & Froese, T. (2010). What is the relationship between behavioural robustness and distributed mechanisms of cognitive behaviour? Special Session on Evolutionary Robotics. Proceedings of the 2010 IEEE World Congress on Computational Intelligence. July, 18-23, 2010 - CCIB, Barcelona, Spain. IEEE Society, 4645-4652.
Fernandez-Leon, J.A., Acosta, G., & Mayosky, M. (2009). Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation. Journal of Robotics & Autonomous Systems, Vol. 57, Issue 4, Elsevier, 411-419.
Fine, P., Di Paolo, E., & Izquierdo, E. (2007). Adapting to your body. Almeida e Costa, F., Rocha, L.M., Costa, E., Harvey, I. and Coutinho, A., editors, Proceedings of the 9th European Conference on Artiicial Life (pp. 203-212). Springer.
Floreano, D., & Keller, L. (2010). Evolution of Adaptive Behaviour in Robots by Means of Darwinian Selection. PLoS Biol 8(1): e1000292. doi:10.1371/ journal.pbio.1000292
Froese, T., & Di Paolo, E. (2008). Stability of coordination requires mutuality of interaction in a model of embodied agents. M. Asada, J. C. T. Hallam, J.-A. Meyer & J. Tani (eds.), From Animals to Animats 10: Proc. of the 10th Int. Conf. on Simulation of Adaptive Behavior (pp. 52-61). Berlin, Germany: Springer-Verlag.
Gallagher, J., Beer, R., Espenschied, K., & Quinn, R. (1996). Application of evolved locomotion controllers to a hexapod robot. Robotics and Autonomous Systems 19, 95-103.
Gallagher, S. (2005). How the Body Shapes the Mind. NY: Oxford University Press.
Harvey, I. (1992). The SAGA cross: The mechanics of recombination for species with variable length genotypes. Manner, R. and Manderick, B., editors, Parallel problem solving from nature 2, (pp. 269–278). Amsterdam. North-Holland.
Harvey, I., Di Paolo, E., Wood, R., Quinn, M., & Tuci, E. (2005). Evolutionary robotics: A new scientiic tool for studying cognition. Artiicial Life 11(1–2), 79–98.
Hubert, J., Matsuda, E., Silverman, E., & Ikegami, T. (2009). A Robotic Approach to Understanding Robustness. The 3rd International Symposium on Mobiligence, (pp. 361-366).
Jakobi, N. (1998). Evolutionary robotics and the radical envelope of noise hypothesis. Adaptive Behavior 6(2), 325–368.
Kitano, H. (2002). Systems Biology: a brief overview. Science 295, 1662-1664.
Kitano, H. (2004). Biological Robustness. Nature Reviews: Genetics 5, Nature Publishing Group, 826-837.
Kitano, H. (2004). Cancer as a robust system: implications for anticancer therapy. Nat. Rev. Cancer 4, 227–235.
Kitano, H. (2006). Robustness from top to bottom. Book review of Wagner (2005): Robustness and Evolvability in Living Systems. Nature Genetics 38, 133.
Kitano, H. (2007). Towards a theory of biological robustness. Molecular Systems Biology 3:137. EMBO and Nature Publishing Group.
Krakauer, D. (2005). Robustness in biological systems: a provisional taxonomy.
T.S. Deisboeck and Y. Kresh, Editors, Complex Systems Science in Biomedicine, Plenum, (pp. 185–207).
Macinnes, I., & Di Paolo, E. (2006). The advantages of evolving perceptual cues. Adaptive Behavior 14(2), 147–156.
Nolfi, S., & Floreano, D. (2000). Evolutionary Robotics. The Biology, Technoloy, and Intelligence of Self-Organizing Machines. MIT Press.
Pfeifer, R., & Bongard, J. (2006). How the Body Shapes the Way We Think: A New View of Intelligence. Bradford Books, MIT Press.
Rabinovich, M., Varona, P., Selverston, A., & Abarbanel, H. (2006). Dynamical principles in neuroscience. Reviews of Modern Physics 78, 1213-1265.
Silverman, E., & Ikegami, T. (2010). Robustness in Artiicial Life, Int. J. Bio- Inspired Computation, Vol. 2, No. 3, 197–212.
Slocum, A., Downey, D., & Beer, R. (2000). Further Experiments in the Evolution of Minimally Cognitive Behavior. From Perceiving Affordances to Selective Attention. Proceedings of the Sixth International Conference on Simulation of Adaptive Behavior (pp. 430-439). MIT Press.
Stelling, J., Sauer, U., Szallasi, Z., Doyle III, F., & Doyle, J. (2004). Robustness of cellular functions. Cell 118, 675–685.
Strogatz, S. (1994). Nonlinear Dynamics & Chaos (2000, First paperback printing). Reading, MA:Addison-Wesley.
Teo, J. (2004). Robustness of Artiicially Evolved Robots: What’s Beyond the Evolutionary Window? The 2nd International Conference on Artiicial Intelligence in Engineering and Technology (ICAIET 2004), volume 1, (pp. 14-20).
von Neumann, J. (1956). Probabilistic logics and the synthesis of reliable organisms from unreliable components. In E. C. Shannon and J. McCarthy, Automata Studies. Princeton:Princeton University Press.
Ziemke, T. (2001). Disentangling notions of embodiment. Pfeifer, R., Lungarella, M., & Westermann, G. (Eds.), Proceedings of Workshop on Developmental and Embodied Cognition, Edinburgh, UK, (pp. 4–8).
Ziemke, T. (2003). What’s that thing called embodiment? Alterman, R., Kirsh,
D. (Eds), Proceedings of the 25th Annual Conference of the Cognitive Science Society (pp. 1134-1139). NJ: Lawrence Erlbaum, Mahwah.
Ziemke, T., Bergfeldt, N., Buason, G., Susi, T., & Svensson, H. (2004). Evolving cognitive scaffolding and environment adaptation: a new research direction for evolutionary robotics. Connection Science 16 (4), 339-350.
Los artículos publicados en la Revista Ciencia y Tecnología son de exclusiva propiedad de sus autores. Las opiniones y el contenido de los mismos pertenecen a sus autores, declinando la Universidad de Palermo toda responsabilidad por los derechos que pudiera derivarse de la lectura y/o interpretación del contenido de los artículos publicados.
No se autoriza la reproducción, utilización ni explotación por parte de ningún tercero de los artículos publicados. Sólo se autoriza su uso para fines exclusivamente académicos y/o de investigación.