Materiales no Newtonianos a base de Almidón Entre el análisis de propiedades y sus aplicaciones al Diseño Sostenible

  • Nadine T. El-Gazzar
  • Alberto T. Estévez
  • Yomna K. Abdallah
Palabras clave: Polímero, natural

Resumen

El actual deterioro ambiental ha impulsado el diseño de materiales ecológicos a partir de recursos sostenibles y renovables, para superar los problemas ambientales actuales, incluidos los residuos orgánicos y el aumento de las emisiones de dióxido de carbono. 

Citas

Barati, B., Karana, E., & Hekkert, P. (2019). Prototyping materials experience: Towards a shared understanding of underdeveloped smart material composites. International Journal of Design, 13(2), pp. 21-38.

Baumgarten, S. & Kamrin, K. (2019, Septiembre 27). A general constitutive model for dense, fine-particle suspensions validated in many geometries. Proceedings of the National Academy of Sciences (PNAS). Recuperado de https://doi.org/10.1073/pnas.221401712.

Brownell, B. (2012). A Practical Use for Oobleck Architect. Recuperado de https://www.academia.edu/43433888/A_Practical_Use_for_Oobleck.

Camere, S. & Karana, E. (2018). Fabricating materials from living organisms: An emerging design practice. Journal of Cleaner Production. Recuperado de https://doi.org/10.1016/j.jclepro.2018.03.081.

Cruz, M. & Beckett, R. (2016). Bioreceptive design: A novel approach to biodigital materiality. Arq: Architectural Research Quarterly. Recuperado de https://doi.org/10.1017/S1359135516000130.

Elbakush, E., Ibrahim, S., Mustafa, S. & Halawani, A. (2017, Noviembre 6). On the performance of human energy harvesting technology. Recuperado de https://ieeexplore.ieee.org/document/8283463.

Elgazzar, N. T., Estévez, A.T. & Abdallah, Y.K. (2021). Bacterial cellulose as a base material in biodigital architecture (between bio-material development and structural customization). Journal of Green Building. Recuperado de https://doi.org/10.3992/jgb.16.2.173.

Estévez, A.T. (2020). Sustainable Living? Biodigital Future! En Jacqueline A. Stagner, David S-K. Ting (eds.), Sustaining Resources for Tomorrow. Berlín: Springer Nature.

Estévez, A.T. (2020). The Fifth Element: Biodigital & Genetics. En Ahmad Vasel BeHagh, Davis S. K. Ting (eds.), Environmental Management of Air, Water, Agriculture, and Energy. Florida: CRC Press / Taylor & Francis Group.

Estévez, A.T. & Abdallah, Y.K. (2022). AI to MATTER-REALITY: Art, Architecture & Design. Barcelona: iBAG-UIC Barcelona.

Gruber, P. & Imhof, B. (2017). Patterns of Growth - Biomimetics and Architectural Design. Buildings. Recuperado de https://doi.org/10.3390/buildings7020032.

Horstmann, S.W., Lynch, K.M. & Arendt, E.K. (2017). Starch Characteristics Linked to Gluten-Free Products. Food. Recuperado de https://doi.org/10.3390/foods6040029.

Hou, X. et al. (2023, Febrero 15). Recent advances of antibacterial starch-based materials. Carbohydrate Polymers. ScienceDirect. Recuperado de https://doi.org/10.1016/j.carbpol.2022.120392.

Ibrahim, M.I.J. et al. (2020, Febrero). Extraction, Chemical Composition, and Characterization of the Potential Lignocellulosic Biomasses and Polymers from Corn Plant Parts. Recuperado de http://dx.doi.org/10.15376/biores.14.3.6485-6500.

Jiang, T. (2019, Noviembre). Starch-based biodegradable materials: Challenges and opportunities. Advanced Industrial and Engineering Polymer Research. Recuperado de https://doi.org/10.1016/j.aiepr.2019.11.003.

Krishna, V., Hussain, S., Kiran, C.H., Kumar, K. (2021, Febrero 23). Experimental evaluation of impact energy on Oobleck material (non-Newtonian fluid). Materials Today: Proceedings. Recuperado de https://doi.org/10.1016/j.matpr.2020.12.1112.

Lima, E.A., Dutra R.S., Souza P.V.S. (2020, Marzo). Studying the Oobleck with video-analysis. Recuperado de https://www.researchgate.net/publication/341708695.

Mohamed, A.B., Gawad A.A. (2021, Abril). Experimental Study of Non-Newtonian Fluid Behavior by Utilizing Drop Testfor Medical Applications. Recuperado de https://dl.acm.org/doi/10.13140/RG.2.2.14886.24643.

Revathi, S., Kumar, A.S. (2020, Marzo). Application of Oobleck as a Speed Breaker. International Journal of Recent Technology and Engineering (IJRTE).

Oxman, N. (2010 Material-based Design Computation. Massachusetts: Massachusetts Institute of Technology (MIT). Pasquero, C., Poletto, M. (2015). Algae Folly v2.0. Recuperado de https://www.ecologicstudio.com/projects/expo-milano-2015-urban-algae-folly.

Pohl, I., Loke, L. (2012, Noviembre). Engaging the sense of touch in interactive architecture. Recuperado de https://dl.acm.org/doi/10.1145/2414536.2414611.

Veeger, M., Prieto, A., Ottelé, M. (2021). Exploring the Possibility of Using Bioreceptive Concrete in Building Façades. Journal of Facade Design and Engineering. Recuperado de https://doi.org/10.7480/jfde.2021.1.5527.

Yumbla, F. et al. (2023, Abril). OobSoft Gripper: A Reconfigurable Soft Gripper Using Oobleck for Versatile and Delicate Grasping. Recuperado de https://doi.org/10.1109/RoboSoft54090.2022.9762097.
Publicado
2024-04-24
Cómo citar
El-Gazzar, N. T., Estévez, A. T., & Abdallah, Y. K. (2024). Materiales no Newtonianos a base de Almidón Entre el análisis de propiedades y sus aplicaciones al Diseño Sostenible. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (220). https://doi.org/10.18682/cdc.vi220.11148

Artículos más leídos del mismo autor/a