From light microscopy to X-ray microtomography: observation and analysis technologies in transdisciplinary approaches for bionic design and botany
Resumen
Los logros recientes en diseños bioinspirados siguen de cerca los crecientes avances en las tecnologías de observación que son esenciales para comprender una estructura o sistema biológico y adaptarlos correctamente en un proyecto. Asimismo, diferentes áreas de disciplinas clásicas, como las ciencias vegetales, incluso se están reescribiendo gracias al avance de las nuevas tecnologías. Este artículo aborda el impacto que tiene el uso de tecnologías de observación en el desarrollo de la investigación botánica de vanguardia, así como sus aplicaciones en diseños biónicos. Desde microscopía óptica (LM) hasta microtomografía de rayos X (µCT), presentamos ejemplos de cómo múltiples tecnologías están contribuyendo a innovaciones y descubrimientos más recientes en morfología y anatomía de plantas, respondiendo preguntas importantes sobre estructura / función. Se discute la evolución de las tecnologías de observación, mostrando cómo están impactando la comprensión de múltiples características de las plantas y su consiguiente adaptación y uso en proyectos bioinspirados mediante ejemplos. Esencialmente, el enfoque transdisciplinario de conectar profesionales de múltiples campos se considera fundamental para el progreso obtenido tanto en biónica como en botánica. Al incluir nuevas tecnologías de observación en su flujo de trabajo de investigación, los diseñadores y botánicos podrían beneficiarse de diferentes perspectivas en la investigación y aplicación de sus hallazgos.
Citas
Akhtar, R., Eichhorn, S. J., & Mummery, P. M. (2006). Microstructure-based Finite Element Modelling and Characterisation of Bovine Trabecular Bone. Journal of Bionic Engineering, 3(1), 3-9. https://doi.org/10.1016/S1672-6529(06)60001-2
Anderson, T. F. (1951). Techniques for the preservaation of three-dimensional structure in preparing specimens for the electron microscope*. Transactions of the New York Academy of Sciences, 13(4 Series II), 130-134. https://doi.org/10.1111/j.2164-0947.1951.tb01007.x
Bolam, J. (1973). The botanical works of Nehemiah Grew, F. R. S. (1641-1712). Notes and Records of the Royal Society of London, 27(2), 219-231. https://doi.org/10.1098/rsnr.1973.0017
Boyd, S. K. (2009). Image-Based Finite Element Analysis. In Advanced Imaging in Biology and Medicine (pp. 301-318). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-68993-5_14
Brodersen, C. R., & Roddy, A. B. (2016). New frontiers in the three-dimensional visualization of plant structure and function. American Journal of Botany, 103(2), 184-188. https://doi.org/10.3732/ajb.1500532
Callister, W. D., & Rethwisch, D. G. (2012). Fundamentals of Materials Science and Engineering : An Integrated Approach (4th ed.). John Wiley & Sons, Inc.
Cidade, M. K., Palombini, F. L., & Kindlein Júnior, W. (2015). Biônica como processo criativo : microestrutura do bambu como metáfora gráfica no design de joias contemporâneas. Revista Educação Gráfica, 19(1), 91–103.
Demanet, C. M., & Sankar, K. V. (1996). Atomic force microscopy images of a pollen grain: A preliminary study. South African Journal of Botany, 62(4), 221-223. https://doi.org/10.1016/S0254-6299(15)30640-2
Evert, R. F., & Eichhorn, S. E. (2006). Esau’s plant anatomy : meristems, cells, and tissues of the plant body: their structure, function, and development. John Wiley & Sons, Inc. https://books.google.com/books?id=0DhEBA5xgbkC&pgis=1
Fagundes, N. F., & Mariath, J. E. de A. (2014). Ovule ontogeny in Billbergia nutans in the evolutionary context of Bromeliaceae (Poales). Plant Systematics and Evolution, 300(6), 1323-1336. https://doi.org/10.1007/s00606-013-0964-x
Forell, G. Von, Robertson, D., Lee, S. Y., & Cook, D. D. (2015). Preventing lodging in bioenergy crops: a biomechanical analysis of maize stalks suggests a new approach. Journal of Experimental Botany, 66(14), 4367-4371. https://doi.org/10.1093/jxb/erv108
Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., Lifshin, E., Sawyer, L., & Michael, J. R. (2003). Scanning electron microscopy and X-ray microanalysis (3rd ed.). Springer Science & Business Media.
Hanke, R., Fuchs, T., Salamon, M., & Zabler, S. (2016). X-ray microtomography for materials characterization. In G. Hu¨bschen, I. Altpeter, R. Tschuncky, & H.-G. Herrmann (Eds.), Materials characterization using Nondestructive Evaluation (NDE) methods (pp. 45-79). Woodhead. https://doi.org/10.1016/B978-0-08-100040-3.00003-1
Haushahn, T., Speck, T., & Masselter, T. (2014). Branching morphology of decapitated arborescent monocotyledons with secondary growth. American Journal of Botany, 101(5), 754-763. https://doi.org/10.3732/ajb.1300448
Heywood, V. H. (1969). Scanning electron microscopy in the study of plant materials. Micron (1969), 1(1), 1-14. https://doi.org/10.1016/0047-7206(69)90002-8
Hu¨bschen, G., Altpeter, I., Tschuncky, R., & Herrmann, H.-G. (Eds.). (2016). Materials characterization using Nondestructive Evaluation (NDE) methods. Woodhead.
Kindlein Júnior, W., & Guanabara, A. S. (2005). Methodology for product design based on the study of bionics. Materials & Design, 26(2), 149-155. https://doi.org/10.1016/j.matdes.2004.05.009
Kuhn, S. A., & Mariath, J. E. de A. (2014). Reproductive biology of the “Brazilian pine” (Araucaria angustifolia - Araucariaceae): Development of microspores and microgametophytes. Flora - Morphology, Distribution, Functional Ecology of Plants, 209(5-6), 290–298. https://doi.org/10.1016/j.flora.2014.02.009
Nogueira, Fernanda M., Palombini, F. L., Kuhn, S. A., Oliveira, B. F., & Mariath, J. E. A. (2019). Heat transfer in the tank-inflorescence of Nidularium innocentii (Bromeliaceae): Experimental and finite element analysis based on X-ray microtomography. Micron, 124, 102714. https://doi.org/10.1016/j.micron.2019.102714
Nogueira, Fernanda Mayara, Kuhn, S. A., Palombini, F. L., Rua, G. H., Andrello, A. C., Appoloni, C. R., & Mariath, J. E. A. (2017). Tank-inflorescence in Nidularium innocentii (Bromeliaceae): three-dimensional model and development. Botanical Journal of the Linnean Society, 185(3), 413-424. https://doi.org/10.1093/botlinnean/box059
Palombini, F. L. (2020). Diretrizes para pesquisas em materiais vegetais com análises por elementos finitos baseadas em microtomografia de raios X e implicações para projetos de biônica em design e engenharia. (Tese de Doutorado. Programa de Pós-Graduação em Design. Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil).
Palombini, F. L., Kindlein Junior, W., Oliveira, B. F. de, & Mariath, J. E. de A. (2016). Bionics and design: 3D microstructural characterization and numerical analysis of bamboo based on X-ray microtomography. Materials Characterization, 120, 357-368. https://doi.org/10.1016/j.matchar.2016.09.022
Palombini, F. L., Kindlein Junior, W., Oliveira, B. F. de, & Mariath, J. E. de A. (2018). Materiais e Biônica: sob a Ótica da Análise de Elementos Finitos Baseada em Imagens de Microtomografia de Raios X. In A. J. V. Arruda (Ed.), Métodos e Processos em Biônica e Biomimética: a Revolução Tecnológica pela Natureza (pp. 245-260). Editora Blucher. https://doi.org/10.5151/9788580393491-15
Palombini, F. L., Kindlein Júnior, W., Silva, F. P. da, & Mariath, J. E. de A. (2017). Design, biônica e novos paradigmas: uso de tecnologias 3D para análise e caracterização aplicadas em anatomia vegetal. Design e Tecnologia, 7(13), 46. https://doi.org/10.23972/det2017iss13pp46-56
Palombini, F. L., Lautert, E. L., Mariath, J. E. de A., & de Oliveira, B. F. (2020). Combining numerical models and discretizing methods in the analysis of bamboo parenchyma using finite element analysis based on X-ray microtomography. Wood Science and Technology, 54(1), 161-186. https://doi.org/10.1007/s00226-019-01146-4
Palombini, F. L., Linden, J. C. de S. van der, Mariath, J. E. de A., & Oliveira, B. F. de. (2018). Design-Aided Science: o designer como promotor de tecnologias 3D para inovação em pesquisa científica. Revista Educação Gráfica, 22(3), 169-186.
Palombini, F. L., Mariath, J. E. de A., & Oliveira, B. F. de. (2020). Bionic design of thinwalled structure based on the geometry of the vascular bundles of bamboo. Thin-Walled Structures, 155, 106936. https://doi.org/10.1016/j.tws.2020.106936
Palombini, F. L., Nogueira, F. M., Kindlein Junior, W., Paciornik, S., Mariath, J. E. de A., & Oliveira, B. F. de. (2020). Biomimetic systems and design in the 3D characterization of the complex vascular system of bamboo node based on X-ray microtomography and finite element analysis. Journal of Materials Research, 35(8), 842–854. https://doi.org/10.1557/jmr.2019.117
Roth, R. R. (1983). The Foundation of Bionics. Perspectives in Biology and Medicine, 26(2), 229-242. https://doi.org/10.1353/pbm.1983.0005
Rowley, J. R., Flynn, J. J., & Takahashi, M. (1995). Atomic Force Microscope Information on Pollen Exine Substructure in Nuphar. Botanica Acta, 108(4), 300-308. https://doi.org/10.1111/j.1438-8677.1995.tb00498.x
Rüthschilling, E. A. (2008). Design de Superficie. UFRGS. Zienkiewicz, O. C., Taylor, R. L., & Zhu, J. Z. (2013). The finite element method : its basis and fundamentals (7th ed.). Butterworth-Heinemann.
Los autores/as que publiquen en esta revista ceden los derechos de autor y de publicación a "Cuadernos del Centro de Estudios de Diseño y Comunicación", Aceptando el registro de su trabajo bajo una licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que de el crédito pertinente a los autores y a esta revista.