The Design of Plant Fibres as Biomimetic Composites

  • Carlo Santulli
Palabras clave: Plant fibres ; Lumens ; Kink bands ; Loading support ; Natural design


Las fibras vegetales, que se basan en estructuras ligno-celulósicas, están dispuestas como compuestos biomiméticos, en el sentido de que incluyen una relación compleja entre una matriz más blanda y un refuerzo más duro a través de una interfaz, con uso continuo de porosidades y arreglos celulares. Sin embargo, las fibras se pueden extraer de diferentes partes de la planta según la especie, en la práctica del tallo, la corteza, el fruto, la hoja o incluso la semilla. Existe una relación entre la región de las fibras y su estructura, que este trabajo pretende discutir, presentando una gran variedad de fibras, geometrías y colocaciones en la propia planta.


Ahmad, F.; Choi, H. S. & Park, M. K. (2015). A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular materials and engineering, 300(1), 10-24.

Ahmed, S. & Ulven, C. A. (2018). Dynamic in-situ observation on the failure mechanism of flax fiber through scanning electron microscopy. Fibers, 6(1), 17.

Bourmaud, A.; Beaugrand, J.; Shah, D. U.; Placet, V. & Baley, C. (2018). Towards the design of high-performance plant fibre composites. Progress in Materials Science, 97, 347-408.

Bourmaud, A.; Merotte, J.; Siniscalco, D.; Le Gall, M.; Gager, V.; Le Duigou, A., ... & Baley, C. (2019). Main criteria of sustainable natural fibre for efficient unidirectional biocomposites. Composites Part A: Applied Science and Manufacturing, 124, 105504.

Carniglia, S. C. (1986). Construction of the tortuosity factor from porosimetry. Journal of Catalysis, 102(2), 401-418.

Chen, B.; Wang, X.; Leng, W.; Mei, C. & Zhai, S. (2019). Spectroscopic/Microscopic elucidation for chemical changes during acid pretreatment on arundo donax. Journal of Bioresources and Bioproducts, 4(3), 192-199.

De Rosa, I. M.; Kenny, J. M.; Maniruzzaman, M.; Moniruzzaman, M.; Monti, M.; Puglia, D., ... & Sarasini, F. (2011). Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Composites Science and Technology, 71(2), 246-254.

Doineau, E.; Bauer, G.; Ensenlaz, L.; Novales, B.; Sillard, C.; Bénézet, J. C., ... & Le Moigne, N. (2020). Adsorption of xyloglucan and cellulose nanocrystals on natural fibres for the creation of hierarchically structured fibres. Carbohydrate Polymers, 248, 116713. Domaschke, S.; Morel, A.; Fortunato, G. & Ehret, A. E. (2019). Random auxetics from buckling fibre networks. Nature communications, 10(1), 1-8.

Gordon, S.; Rodgers, J. & Abidi, N. (2017). Cotton fibre cross-section properties. In Cotton fibres, characteristics, uses and performance (Pp. 65-86). Nova Science publishers, Inc. Gu, J.; Zhang, W.; Su, H.; Fan, T.; Zhu, S.; Liu, Q., & Zhang, D. (2015). Morphology genetic materials templated from natural species. Advanced Materials, 27(3), 464-478.

Haugan, E. & Holst, B. (2014). Flax look-alikes: Pitfalls of ancient plant fibre identification. Archaeometry, 56(6), 951-960.

Jarvis, M. C. (2018). Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2112), 20170045.

Kalia, S.; Kaith, B. S. & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polymer Engineering & Science, 49(7), 1253-1272.

Koch, K.; Bhushan, B. & Barthlott, W. (2009). Multifunctional surface structures of plants: an inspiration for biomimetics. Progress in Materials science, 54(2), 137-178.

Koruk, H. & Genc, G. (2015). Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials Letters, 157, 166-168.

Legland, D. & Beaugrand, J. (2013). Automated clustering of lignocellulosic fibres based on morphometric features and using clustering of variables. Industrial Crops and Products, 45, 253-261.

Liu, K.; Takagi, H. & Yang, Z. (2013). Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Composites Part A: Applied Science and Manufacturing, 45, 14-22.

Liu, M.; Thygesen, A.; Summerscales, J. & Meyer, A. S. (2017). Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review. Industrial crops and products, 108, 660-683.

Luz, G. M. & Mano, J. F. (2010). Mineralized structures in nature: examples and inspirations for the design of new composite materials and biomaterials. Composites Science and Technology, 70(13), 1777-1788.

Mattrand, C.; Béakou, A. & Charlet, K. (2014). Numerical modeling of the flax fiber morphology variability. Composites Part A: Applied Science and Manufacturing, 63, 10-20. Melelli, A.; Durand, S.; Arnould, O.; Richely, E.; Guessasma, S.; Jamme, F., ... & Bourmaud, A. (2021). Extensive investigation of the ultrastructure of kink-bands in flax fibres. Industrial Crops and Products, 164, 113368.

Mizuno, H.; Luengo, G. S. & Rutland, M. W. (2013). New insight on the friction of natural fibers. Effect of sliding angle and anisotropic surface topography. Langmuir, 29(19), 5857-5862.

Mukhopadhyay, S.; Fangueiro, R.; Arpac, Y., & Sentürk, Ü. (2008). Banana fibers–variability and fracture behaviour. Journal of Engineered Fibers and Fabrics, 3(2), 155892500800300207.

Newman, R. H.; Le Guen, M. J.; Battley, M. A. & Carpenter, J. E. (2010). Failure mechanisms in composites reinforced with unidirectional Phormium leaf fibre. Composites Part A: Applied Science and Manufacturing, 41(3), 353-359.

Nguong, C. W.; Lee, S. N. B. & Sujan, D. (2013). A review on natural fibre reinforced polymer composites. International Journal of Materials and Metallurgical Engineering, 7(1), 52-59.

Patil, N. D.; Tanguy, N. R. & Yan, N. (2016). 3-Lignin interunit linkages and model compounds. Lignin in Polymer Composites, 27-47.

Peças, P.; Carvalho, H.; Salman, H. & Leite, M. (2018). Natural fibre composites and their applications: a review. Journal of Composites Science, 2(4), 66.

Santulli, C. (2008). A biomimetic approach to the production of sustainable structural composites using plant fibres. In Biologically inspired textiles (Pp. 95-114). Woodhead Publishing.

Santulli, C. & Langella, C. (2016). Study and development of concepts of auxetic structures in bio-inspired design. International Journal of Sustainable Design, 3(1), 20-37.

Sarasini, F. & Fiore, V. (2018). A systematic literature review on less common natural fibres and their biocomposites. Journal of cleaner production, 195, 240-267.

Sfiligoj Smole, M.; Hribernik, S.; Stana Kleinschek, K. & Kreže, T. (2013). Plant fibres for textile and technical applications. Advances in agrophysical research, 369-398.

Soltani, P.; Taban, E.; Faridan, M.; Samaei, S. E. & Amininasab, S. (2020). Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber. Applied Acoustics, 157, 106999.

Šturcová, A.; His, I.; Apperley, D. C.; Sugiyama, J. & Jarvis, M. C. (2004). Structural details of crystalline cellulose from higher plants. Biomacromolecules, 5(4), 1333-1339.

Summerscales, J.; Hall, W. & Virk, A. S. (2011). A fibre diameter distribution factor (FDDF) for natural fibre composites. Journal of materials science, 46(17), 5876-5880.

Verma, P.; Smith, C. L.; Griffin, A. C. & Shofner, M. L. (2020). Wool nonwovens as candidates for commodity auxetic materials. Engineering Research Express, 2(4), 045034.

Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P. & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial crops and products, 19(3), 245-254.

Walton, W. H. (1948). Feret‘s statistical diameter as a measure of particle size. Nature, 162(4113), 329-330.

Wang, D.; Wang, Z.; Zheng, X. & Tian, M. (2020). Activated carbon fiber derived from the seed hair fibers of Metaplexis japonica: novel efficient adsorbent for methylene blue. Industrial Crops and Products, 148, 112319.

Wegst, U. G. K. & Ashby, M. F. (2004). The mechanical efficiency of natural materials. Philosophical Magazine, 84(21), 2167-2186.

Yue, H.; Rubalcaba, J. C.; Cui, Y.; Fernández-Blázquez, J. P.; Yang, C. & Shuttleworth, P. S. (2019). Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose, 26(8), 4693-4706.

Zeng, X.; Mooney, S. J. & Sturrock, C. J. (2015). Assessing the effect of fibre extraction processes on the strength of flax fibre reinforcement. Composites Part A: Applied Science and Manufacturing, 70, Pp. 1-7.

Cómo citar
Santulli, C. (2021). The Design of Plant Fibres as Biomimetic Composites. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (149).