The Design of Plant Fibres as Biomimetic Composites

  • Carlo Santulli
Keywords: Fibras vegetales ; Lúmenes ; Bandas de torsión ; Soporte de carga ; Diseño natural

Abstract

Plant fibres, which are based on lignocellulosic structures, are arranged as biomimetic composites, in the sense that they include a complex relationship between a softer matrix and a harder reinforcement through an interface, with continuous use of porosities and cellular arrangements. However, the fibres can be extracted from different parts of the plant according to the species, in practice from the stem, the bark, the fruit, the leaf or even the seed. There is a relation between the fibre region and their structure, which this work aims to discuss, presenting a large variety of fibres, geometries and collocation in the plant itself.

References

Ahmad, F.; Choi, H. S. & Park, M. K. (2015). A review: natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromolecular materials and engineering, 300(1), 10-24.

Ahmed, S. & Ulven, C. A. (2018). Dynamic in-situ observation on the failure mechanism of flax fiber through scanning electron microscopy. Fibers, 6(1), 17.

Bourmaud, A.; Beaugrand, J.; Shah, D. U.; Placet, V. & Baley, C. (2018). Towards the design of high-performance plant fibre composites. Progress in Materials Science, 97, 347-408.

Bourmaud, A.; Merotte, J.; Siniscalco, D.; Le Gall, M.; Gager, V.; Le Duigou, A., ... & Baley, C. (2019). Main criteria of sustainable natural fibre for efficient unidirectional biocomposites. Composites Part A: Applied Science and Manufacturing, 124, 105504.

Carniglia, S. C. (1986). Construction of the tortuosity factor from porosimetry. Journal of Catalysis, 102(2), 401-418.

Chen, B.; Wang, X.; Leng, W.; Mei, C. & Zhai, S. (2019). Spectroscopic/Microscopic elucidation for chemical changes during acid pretreatment on arundo donax. Journal of Bioresources and Bioproducts, 4(3), 192-199.

De Rosa, I. M.; Kenny, J. M.; Maniruzzaman, M.; Moniruzzaman, M.; Monti, M.; Puglia, D., ... & Sarasini, F. (2011). Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Composites Science and Technology, 71(2), 246-254.

Doineau, E.; Bauer, G.; Ensenlaz, L.; Novales, B.; Sillard, C.; Bénézet, J. C., ... & Le Moigne, N. (2020). Adsorption of xyloglucan and cellulose nanocrystals on natural fibres for the creation of hierarchically structured fibres. Carbohydrate Polymers, 248, 116713. Domaschke, S.; Morel, A.; Fortunato, G. & Ehret, A. E. (2019). Random auxetics from buckling fibre networks. Nature communications, 10(1), 1-8.

Gordon, S.; Rodgers, J. & Abidi, N. (2017). Cotton fibre cross-section properties. In Cotton fibres, characteristics, uses and performance (Pp. 65-86). Nova Science publishers, Inc. Gu, J.; Zhang, W.; Su, H.; Fan, T.; Zhu, S.; Liu, Q., & Zhang, D. (2015). Morphology genetic materials templated from natural species. Advanced Materials, 27(3), 464-478.

Haugan, E. & Holst, B. (2014). Flax look-alikes: Pitfalls of ancient plant fibre identification. Archaeometry, 56(6), 951-960.

Jarvis, M. C. (2018). Structure of native cellulose microfibrils, the starting point for nanocellulose manufacture. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376(2112), 20170045.

Kalia, S.; Kaith, B. S. & Kaur, I. (2009). Pretreatments of natural fibers and their application as reinforcing material in polymer composites—a review. Polymer Engineering & Science, 49(7), 1253-1272.

Koch, K.; Bhushan, B. & Barthlott, W. (2009). Multifunctional surface structures of plants: an inspiration for biomimetics. Progress in Materials science, 54(2), 137-178.

Koruk, H. & Genc, G. (2015). Investigation of the acoustic properties of bio luffa fiber and composite materials. Materials Letters, 157, 166-168.

Legland, D. & Beaugrand, J. (2013). Automated clustering of lignocellulosic fibres based on morphometric features and using clustering of variables. Industrial Crops and Products, 45, 253-261.

Liu, K.; Takagi, H. & Yang, Z. (2013). Dependence of tensile properties of abaca fiber fragments and its unidirectional composites on the fragment height in the fiber stem. Composites Part A: Applied Science and Manufacturing, 45, 14-22.

Liu, M.; Thygesen, A.; Summerscales, J. & Meyer, A. S. (2017). Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review. Industrial crops and products, 108, 660-683.

Luz, G. M. & Mano, J. F. (2010). Mineralized structures in nature: examples and inspirations for the design of new composite materials and biomaterials. Composites Science and Technology, 70(13), 1777-1788.

Mattrand, C.; Béakou, A. & Charlet, K. (2014). Numerical modeling of the flax fiber morphology variability. Composites Part A: Applied Science and Manufacturing, 63, 10-20. Melelli, A.; Durand, S.; Arnould, O.; Richely, E.; Guessasma, S.; Jamme, F., ... & Bourmaud, A. (2021). Extensive investigation of the ultrastructure of kink-bands in flax fibres. Industrial Crops and Products, 164, 113368.

Mizuno, H.; Luengo, G. S. & Rutland, M. W. (2013). New insight on the friction of natural fibers. Effect of sliding angle and anisotropic surface topography. Langmuir, 29(19), 5857-5862.

Mukhopadhyay, S.; Fangueiro, R.; Arpac, Y., & Sentürk, Ü. (2008). Banana fibers–variability and fracture behaviour. Journal of Engineered Fibers and Fabrics, 3(2), 155892500800300207.

Newman, R. H.; Le Guen, M. J.; Battley, M. A. & Carpenter, J. E. (2010). Failure mechanisms in composites reinforced with unidirectional Phormium leaf fibre. Composites Part A: Applied Science and Manufacturing, 41(3), 353-359.

Nguong, C. W.; Lee, S. N. B. & Sujan, D. (2013). A review on natural fibre reinforced polymer composites. International Journal of Materials and Metallurgical Engineering, 7(1), 52-59.

Patil, N. D.; Tanguy, N. R. & Yan, N. (2016). 3-Lignin interunit linkages and model compounds. Lignin in Polymer Composites, 27-47.

Peças, P.; Carvalho, H.; Salman, H. & Leite, M. (2018). Natural fibre composites and their applications: a review. Journal of Composites Science, 2(4), 66.

Santulli, C. (2008). A biomimetic approach to the production of sustainable structural composites using plant fibres. In Biologically inspired textiles (Pp. 95-114). Woodhead Publishing.

Santulli, C. & Langella, C. (2016). Study and development of concepts of auxetic structures in bio-inspired design. International Journal of Sustainable Design, 3(1), 20-37.

Sarasini, F. & Fiore, V. (2018). A systematic literature review on less common natural fibres and their biocomposites. Journal of cleaner production, 195, 240-267.

Sfiligoj Smole, M.; Hribernik, S.; Stana Kleinschek, K. & Kreže, T. (2013). Plant fibres for textile and technical applications. Advances in agrophysical research, 369-398.

Soltani, P.; Taban, E.; Faridan, M.; Samaei, S. E. & Amininasab, S. (2020). Experimental and computational investigation of sound absorption performance of sustainable porous material: Yucca Gloriosa fiber. Applied Acoustics, 157, 106999.

Šturcová, A.; His, I.; Apperley, D. C.; Sugiyama, J. & Jarvis, M. C. (2004). Structural details of crystalline cellulose from higher plants. Biomacromolecules, 5(4), 1333-1339.

Summerscales, J.; Hall, W. & Virk, A. S. (2011). A fibre diameter distribution factor (FDDF) for natural fibre composites. Journal of materials science, 46(17), 5876-5880.

Verma, P.; Smith, C. L.; Griffin, A. C. & Shofner, M. L. (2020). Wool nonwovens as candidates for commodity auxetic materials. Engineering Research Express, 2(4), 045034.

Ververis, C.; Georghiou, K.; Christodoulakis, N.; Santas, P. & Santas, R. (2004). Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial crops and products, 19(3), 245-254.

Walton, W. H. (1948). Feret‘s statistical diameter as a measure of particle size. Nature, 162(4113), 329-330.

Wang, D.; Wang, Z.; Zheng, X. & Tian, M. (2020). Activated carbon fiber derived from the seed hair fibers of Metaplexis japonica: novel efficient adsorbent for methylene blue. Industrial Crops and Products, 148, 112319.

Wegst, U. G. K. & Ashby, M. F. (2004). The mechanical efficiency of natural materials. Philosophical Magazine, 84(21), 2167-2186.

Yue, H.; Rubalcaba, J. C.; Cui, Y.; Fernández-Blázquez, J. P.; Yang, C. & Shuttleworth, P. S. (2019). Determination of cross-sectional area of natural plant fibres and fibre failure analysis by in situ SEM observation during microtensile tests. Cellulose, 26(8), 4693-4706.

Zeng, X.; Mooney, S. J. & Sturrock, C. J. (2015). Assessing the effect of fibre extraction processes on the strength of flax fibre reinforcement. Composites Part A: Applied Science and Manufacturing, 70, Pp. 1-7.

Published
2021-12-28
How to Cite
Santulli, C. (2021). The Design of Plant Fibres as Biomimetic Composites. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (149). https://doi.org/10.18682/cdc.vi149.5520