Las fibras vegetales: materiales ancestrales para un futuro sostenible en el desarrollo de productos

  • Juan Manuel España Espinoza
Keywords: Vegetable fibers ; Sustainability ; Plastic Materials ; Ancestral knowledge ; Technological development ; New materials ; ACM. (Advanced composite materials)

Abstract

Latin America is characterized by the biotic richness and biodiversity of its ecosystems that from pre-Hispanic times were the support of human settlements throughout the continent. This diversity favored the emergence of indigenous communities characterized by the territory, which provided them with what they needed for their sustenance and development. The vegetal fibers have been from those times a factor of identity and a reflection of material and immaterial cultural wealth. Ties, clothing, tools, backpacks and other objects of the indigenous ethnic groups and of the Latin American peasant culture are a reflection of knowledge. The invasion of polymers derived from petroleum relegated and threatened the continuity in the use of vegetable fibers. The plastic boots, the polypropylene ties, the mantles and the polyester fabrics put the vegetal fibers in the background for decades and caused the disappearance of ancestral knowledge manifested in utilitarian crafts. However, the threatening increase of global warming, the contamination of water resources with plastics and the enormous consequences in ecosystems due to our demand for oil and its derivatives, has led the world in the last decades to strengthen research and development in new materials and applications of vegetable fibers and by-products of agro-industry, to replace or minimize the use of plastics.

Now Latin America is one of the regions with the most bioprospecting potential in the use and exploitation of vegetable fibers, both because of the abundance and diversity it possesses and because of the knowledge and techniques that are linked to rural communities throughout the continent. However, it seems that we are lagging behind in the research around fibers and their potential in new materials and applications.

Which fibers are better in the development of composite materials? What are the advantages and environmental consequences of increasing their utilization? How does it benefit and / or affect the rural communities that produce these fibers? What are its physical and mechanical qualities? These are some of the many questions that we should ask from the investigation. And although there are several research processes in the academy in this regard, the review of indexed articles and academic publications seems to suggest that it is other regions such as Europe, North America and Asia that are taking the lead in the research, use and application of fibers in new materials and products, despite not having a biodiversity like the Latin American one. At the Jorge Tadeo Lozano University in Bogotá, from the School of Product Design we are focused on investigating the use of vegetable fibers and by-products of agro-industry for the development of new materials and applications. Design had a very important role in the mass use of plastics, now must be an active part in the search for alternative materials that enhance the sustainable use of resources and the strengthening of product developments for local economies. The vegetal fibers were in the past the cradle of local knowledge to solve the daily and rural needs, it is time that we return to this route. A group of researchers made up of undergraduate and postgraduate professors and students, in partnership with agricultural research institutions and fiber producing communities, are in search of developing new composite materials (ACM) biopolymers and local technological transformation systems, to encourage the use and application of local materials in the development of products capable of competing with those made of plastic materials, but with all the advantages implied by the use of biodegradable and sustainable materials. This article describes the route that we as researchers are traveling and invites peers from other latitudes to join us in this effort.

References

Abdellaoui, H.; Bensalah, H.; Echaabi, J.; Bouhfid, R. & Qaiss, A. (2015). Fabrication, characterization and modelling of laminated composites based on woven jute fibres reinforced epoxy resin. Materials & Design, 68, 104-113.

Ariza, R.; Benasso, T.; Dorado, C.; Flores, F.; Ramirez, R. y Yoguel, V. (2014). Objeto fieltro, oportunidades para agregar valor a la cadena lanera. Instituto nacional de tecnología industrial. Centro de investigación y desarrollo en diseño industrial. 152.

Asim, M.; Abdan, K.; Jawaid, M.; Nasir, M.; Dashtizadeh, Z.; Ishak, M. R. & Hoque, M. E. (2015). A Review on Pineapple Leaves fibre and its composites. International Journal of Polymer Science. http://dx.doi.org/10.1155/2015/950567

ASTM (2007). Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International, West Conshohocken, PA. doi: 10.1520/D7264_D7264M-07

ASTM (2008). Standard test method for tensile properties of polymer matrix composite materials. ASTM International, West Conshohocken, PA. doi: 10.1520/D0638-08

ASTM (2010). Standard Test Method for Impact Resistance of Flat, Rigid Plastic Specimens by Means of a Falling Dart (Tup or Falling Mass). ASTM International, West Conshohocken, PA. doi: 10.1520/D5628-10

Bavan, D. S. & Kumar, G. C. M. (2010). Potential use of natural fiber composite materials in India. Journal of Reinforced Plastics and Composites, 29(24): 3600-3613. https://doi.org/10.1177/0731684410381151

Bogoeva-Gaceva, G.; Avella, M.; Malinconico, M.; Buzarovska, A.; Grozdanov, A.; Gentile, G. & Errico, M. E. (2007). Natural fiber eco-composites. Polym. Compos. 28: 98-107. doi:10.1002/pc.20270

Boujmal, R.; Essabir, H.; Nekhlaoui, S.; Bensalah, M. O.; Bouhfid, R. & Qaiss, A. (2014). Composite from polypropylene and henna fiber: structural, mechanical and thermal properties. Journal of Biobased Materials and Bioenergy, 8(2), 246-252.

Castro, D.; Ruvolo-Filho, A. & Frollini, E. (2012). Materials prepared from biopolyethylene and curaua fibers: Composites from biomass. Polymer Testing, 31(7), 880-888.

Chung, D. (2010). Composite materials: science and applications. Springer Science & Business Media, 318.

España, J. M. y Barbosa, E. (Julio 2017). Las fibras naturales como foco de desarrollo sostenible en Latinoamérica. Desde la investigación transdisciplinar y sin fronteras. XI Convención Internacional sobre Medioambiente y Desarrollo Sostenible. Memorias. La Habana, Cuba, 910 pp.

España, J. M. y Peña, V. (2013). Estrategia para el mejoramiento ambiental de las prácticas productivas y aumento de la productividad del fique en mercados verdes. Tesis de Grado. Maestría en Gestión Ambiental. Pontificia Universidad Javeriana. Bogotá. 136 pp.

España, J. M.; Rodriguez, J. y Romero, D. (2019). Experiencias pedagógicas que detonan oportunidades locales, Actio. Journal of technology in design, film arts and visual communication. 103-107.

FAO-CFC (2001). Alternative Applications for Sisal and Henequen. Proceedings of a Seminar held by the Food and Agriculture Organization of the UN (FAO) and the Common Fund for Commodities (CFC). Rome, 13 December 2000. Technical Paper No. 14. http://www.fao.org/docrep/004/Y1873E/Y1873E00.HTM

Fowler, P. A.; Hughes, M. J. & Elias, R. M. (2006). Review biocomposites: Technology, environmental credentials and market forces. J Sci Food Agric, 86, 1781-1789.

Gopinath, A.; Kumar, M. S. & Elayaperumal, A. (2014). Experimental investigations on mechanical properties of jute fiber reinforced composites with polyester and epoxy resin matrices. Procedia Engineering, 97, 2052-2063.

Groover, M, (1997). Fundamentos de manufactura moderna: materiales, procesos y sistemas. Pearson Educación.

Hoyos, C. & Vázquez, A. (2012). Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application. Composites Part B: Engineering, 43(8), 3120-3130.

Jaramillo, N.; Hoyos, D. y Santa, J. F. (2016). Composites with pineapple-leaf fibers manufactured by layered compression molding. Ingeniería y Competitividad, 18(2): 151-162.

John, M. J. & Thomas, S. (2008). Biofibers and biocomposites. Carbohydr. Polym., 71(3), 343-364.

Joshi, S. V.; Drzal, L. T.; Mohanty, A. K. & Arora, S. (2004). Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 35(3), 371-376.

Leao, A.; Souza, S.; Cherian, B.; Frollini, E.; Thomas, S.; Pothan, L. & Kottai, S. (2010). Pineapple Leaf Fibers for Composites and Cellulose. Molecular Crystals and Liquid Crystals, 522, 336-341. DOI: 10.1080/15421401003722930.

Linares E. (1994). Inventario preliminar de las plantas utilizadas para elaborar artesanías en Colombia. Universitas Scientiarium, 2, 7-43.

Linares, E. L.; Figueroa, Y.; Galeano, G. y García, N. (2008). Fibras vegetales empleadas en artesanías en Colombia. Artesanías de Colombia S.A. Ministerio de Comercio, Industria y Turismo; Instituto de Ciencias Naturales Facultad de Ciencias- Universidad Nacional de Colombia. 333 pp.

Mohammed, L.; Ansari, M. N. M.; Pua, G.; Jawaid, M. e Islam, M. S. (2015). A Review on Natural Fiber Reinforced polymer composite and its applications. Int. J. Polymer Science. http://dx.doi.org/10.1155/2015/243947

Mohanty, A.; Misra, M. y Drzal, L. (2002). Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1-2), 19-26.

Mohanty, A. K.; Misra, M. and Hinrichsen, G. (2000). Biofibres, biodegradable polymer and composites: an overview. Macromol Mater Eng, 276/277, 1-24

Moreno, G. (2017). Mechanical Properties Characterization of Advanced Composite Materials- Book Review. Ciencia y Poder Aéreo, 12(1), 288-290.

Neira-García, A.; Martínez-Reina, A. & Orduz-Rodríguez, J. (2016). Análisis del mercado de piña Gold y Perolera en dos principales centrales mayoristas de Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 17(2), 149-165.

Peréz A. Inventario crítico de las máquinas desfibradoras en México (1830-1890): una propuesta de documentación histórica y evaluación técnica para la investigación en diseño industrial. Universidad Autónoma Metropolitana, Unidad Azcapotzalco, 1999.

Sathish, T. & Periyasamy, P. (2017). Checking the Mechanical Properties of Ananas comosus leaf fiber reinforced polymer composite material. International Journal of Pure and Applied Mathematics, 116(24), 243-253.

Saiter, J.; Dobircau, L. & Leblanc, N. (2012). Are 100% green composites and green thermoplastics the new materials for the future? International Taj, S.; Ali, M. & Khan, S. (2007).Natural fiber-reinforced polymer composites: review. Proc Pakistan Acad Sci, 44(2), 129-144.

Valero-Valdivieso, M.; Ortegón, Y. & Uscategui, Y. (2013). Biopolímeros: avances y perspectivas. Dyna, 80(181), 171-180.

Wambua, P.; Ivens, J. & Verpoest, I. (2003). Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol, 63, 1259-1264.

Zah, R.; Hischier, R.; Leão, A. L.; Braun, I. (2007). Curauá fibers in the automobile industry–a sustainability assessment. Journal of Cleaner Production,15 (11-12), 1032-1040.

Published
2020-08-27
How to Cite
España Espinoza, J. M. (2020). Las fibras vegetales: materiales ancestrales para un futuro sostenible en el desarrollo de productos. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (87). https://doi.org/10.18682/cdc.vi87.3767