Mapping the Residential Electric Future of Salta: Comparison between Stochastic Models and Artificial Neural Networks for Annual Hourly Residential Electrical Consumption Simulation
Abstract
The simulation of annual hourly electrical consumption in homes in the city of Salta can be carried out through a dynamic stochastic model or the use of artificial neural networks (ANNs). The stochastic model considers the natural variability of factors such as climate and economic activity, using probabilistic techniques to forecast electrical demand. On the other hand, ANNs employ machine learning algorithms to analyze complex patterns in historical data and generate predictions. The choice between both models depends on data availability, processing capacity, and simulation objectives. While the stochastic model provides a probabilistic understanding of electrical demand, ANNs can capture non-linear relationships and subtler patterns, leading to more accurate predictions in certain circumstances. In Salta, where climate and economic activity are highly variable, combining both approaches could provide a more comprehensive simulation of annual electrical consumption. Although the stochastic model shows statistically superior results, ANNs are more computationally efficient, suggesting that the choice depends on specific contextual considerations and available resources.
Downloads
References
Chabane, F., Moummi, N., & Brima, A. (2016) Prediction of the theoretical and semi-empirical model of ambient temperature. Frontiers in Energy, 10(3), 268–276.
Divina, F., Garcia Torres , M., Gomez Vela, F. A. & Vazquez Noguera J. L. (2019) A comparative study of time series forecasting methods for short term electric energy consumption prediction in smart buildings. Energies, 12(10), 1934.
Elsaraiti, M., Ali, G., Musbah, H., Merabet , A., and Little, T. (2021) Time series analysis of electricity consumption forecasting using ARIMA model. IEEE Green technologies conference (GreenTech), 259-262.
Eskandari, H., Imani, M., & Moghaddam, M. P. (2021). Convolutional and recurrent neural network based model for short-term load forecasting. Electric Power Systems Research, 195, 107173.
Fekri, M. N., Patel, H., Grolinger, K., & Sharma, V. (2021). Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network. Applied Energy, 282, 116177.
García-García, J. A., Reding-Bernal, A., & López-Alvarenga, J. C. (2013). Cálculo del tamaño de la muestra en investigación en educación médica. Investigación En Educación Médica, 2(8), 217–224.
Iftikhar, H., Bibi, N., Canas Rodrigues P., & López-Gonzales J. L. (2023) Multiple novel decomposition techniques for time series forecasting: Application to monthly forecasting of electricity consumption in Pakistan. Energies, 16(6), 2579.
Meira, G. R., Padaratz, I. J., Alonso, C., & Andrade, C. (2003). Efecto de la distancia al mar en la agresividad por cloruros en estructuras de hormigón en la costa brasileña. Materiales de Construcción, 53(271–272), 179–188,
Shine, P., Scully, T., Upton, J., & Murphy, M. D. (2018). Multiple linear regression modelling of on-farm direct water and electricity consumption on pasture based dairy farms. Computers and electronics in agriculture, 148, 337-346.
Somu, N., MR, G. R., & Ramamritham, K. (2021). A deep learning framework for building energy consumption forecast. Renewable and Sustainable Energy Reviews, 137, 110591.
Valdivieso, C., Valdivieso, R. & Valdivieso, O. (2011). Determinación del tamaño muestral mediante el uso de árboles de decisión. UPB- Investigación & Desarrollo, 11(2000), 148–176.
The articles published in the journal Ciencia y Tecnología are the exclusive property of their authors. Their opinions and content belong to their authors, and the Universidad de Palermo declines all responsibility for the rights that may arise from reading and/or interpreting the content of the published articles.
The reproduction, use or exploitation by any third party of the published articles is not authorized. Its use is only authorized for exclusively academic and/or research purposes.