Intelligent Diagnosis of Phlebothrombosis
Abstract
This article presents a bayesian network to diagnose deep vein thrombosis or deep phlebothrombosis. To detect this condition in a patient, the network considers symptoms, medical history and medical practice, and laboratory results. The network test was carried out with 59 real cases and in collaboration with two specialist doctors. The results of the applied metrics were satisfactory.
Downloads
References
Férez Rubio, J.A. (2017). Redes Bayesianas aplicadas a la Medicina. Trabajo Final para Master Universitario en Bioinformática y Biomedicina. España: Universidad Abierta de Catalunya. Disponible en: http://openaccess.uoc.edu/webapps/o2/bitstream/10609/63906/6/jferezrTFM0617Mmemoria.pdf
Gena, C. (2005). Methods and techniques for the evaluation of user-adaptive systems. The Knowledge Engineering Review, 20 (1), 1-37. UK: Cambridge University Press.
González Cedillo, C. (2019). Diagnóstico de enfermedades cardíacas con los algoritmos supervisados. Revista Ciencia y Tecnología, 19, 117-128. Argentina: Universidad de Palermo.
Jensen, F. (1998). An introduction to Bayesian Networks. UK: UCL Press.
Ordoñez Ordoñez, P. Guamán, Jima, D., Patiño Rivera, S. & Torres Carrión, H. (2016). Diagnóstico de enfermedades infecciosas virales en especies canina y felina utilizando redes bayesianas. Proc. Del Cong. Int. de Sistemas Inteligentes y Nuevas Tecnologías. Disponible en: https://www.researchgate.net/publication/313477263_Diagnostico_de_enfermedades_infecciosas_virales_en_especies_canina_y_felina_utilizando_redes_bayesianas
Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible inference. USA: Morgan Kaufmann Publishers Inc.
Salarte Martínez, G. & Castro Bermúdez, Y. (2012). Modelo híbrido para el diagnóstico de enfermedades cardiovasculares basado en inteligencia artificial. Tecnura, 16 (33), 35-52. Colombia: Universidad Distrital Francisco José de Caldas.
Sandoyal, E. (2014). La incertidumbre en Medicina. Tendencias en Medicina, 44, 131-138. Uruguay: Farmanuario.
Sprockel, J. & Diaztagle, J. (2015). Precisión diagnóstica de un modelo de redes bayesianas en los síndrome coronarios agudos. Revista Salud, 47(2), 179-185. Colombia: Universidad Industrial de Santander.
The articles published in the journal Ciencia y Tecnología are the exclusive property of their authors. Their opinions and content belong to their authors, and the Universidad de Palermo declines all responsibility for the rights that may arise from reading and/or interpreting the content of the published articles.
The reproduction, use or exploitation by any third party of the published articles is not authorized. Its use is only authorized for exclusively academic and/or research purposes.