Exploring parallel formal verification of BIG-DATA systems

  • Fernando Asteasuain Universidad Nacional de Avellaneda- Centro de Altos Estudio CAETI -UAI
  • Luciana Rodriguez Caldeira Universidad Abierta Interamericana-CAETI
Keywords: formal verification, big data, parallel algorithms, model checking

Abstract

Software Engineering is trying to adapt its tools, mechanisms and techniques to cope with the challenges involved when developing BIG DATA software systems. In particular, formal verification in one of the areas that more urgently is required to step in. In this work we introduce two crucial aspects to consolidate the FVS tool to tackle this issue. For one side, FVS’s parallel algorithm is proved to be sound and correct. For the other side, we developed a compelling empirical validation of our approach, employing a communication protocol relevant in the industrial world within a context of parallel systems, introducing a load-balancer process and comparing several implementations.

Downloads

Download data is not yet available.

Author Biographies

Fernando Asteasuain, Universidad Nacional de Avellaneda- Centro de Altos Estudio CAETI -UAI

Doctor en Ciencias de la Computación de la UNS. Su principal foco de investigación es la verificación formal de Software y el modelado de comportamiento de sistemas en dominios como robótica, industria automotriz, y diseño de hardware. Ha publicado en diversas revistas y congresos nacionales e internacionales sobre estos temas. Ha dirigido proyectos de investigación financiados por la Universidad Nacional de Avellaneda, donde actualmente dirige el laboratorio de Inteligencia Artificial aplicada.

Luciana Rodriguez Caldeira, Universidad Abierta Interamericana-CAETI
Alumna avanzada de la Ingeniería en Sistemas Informáticos de la UAI. Sus primeros pasos en la investigación académica se han centrado en la aplicación de técnicas rigurosas de verificación formal en sistemas de BIG DATA.  

References

Asteasuain, F., & Braberman, V. (2017). Declaratively building behavior by means of scenario clauses. Requirements Engineering, 22(2), 239-274.

Asteasuain, F., & Rodriguez Caldeira L (2020). A Parallel Tableau Algorithm for BIG DATA Verification. CACIC 2020.

Bellettini, C., Camilli, M., Capra, L., & Monga, M. (2016). Distributed CTL model checking using MapReduce: theory and practice. Concurrency and Computation: Practice and Experience, 28(11), 3025-3041.

Boukala, M. C., & Petrucci, L. (2012). Distributed model-checking and counterexample search for CTL logic. International Journal of Critical Computer-Based Systems 3, 3(1-2), 44-59.

Brassesco,M.V. 2017. Síntesis concurrente de controladores para juegos definidos con objetivos de generalized reactivity(1). Tesis de Licenciatura., http://dc.sigedep.exactas.uba.ar/media/academic/grade/thesis/tesis_18.pdf UBAFCEyN Dpto Computacion

Brim, L., Yorav, K., & Žídková, J. (2005). Assumption-based distribution of CTL model checking. International Journal on Software Tools for Technology Transfer, 7(1), 61-73.

Camilli, M. (2014, May). Formal verification problems in a big data world: towards a mighty synergy. In Companion Proceedings of the 36th International Conference on Software Engineering (pp. 638-641).

Clarke, E. M., Klieber, W., Nováček, M., & Zuliani, P. (2011, September). Model checking and the state explosion problem. In LASER Summer School on Software Engineering (pp. 1-30). Springer, Berlin, Heidelberg.

Ding, J., Zhang, D., & Hu, X. H. (2016, June). A framework for ensuring the quality of a big data service. In 2016 IEEE International Conference on Services Computing (SCC) (pp. 82-89). IEEE.

Hummel, O., Eichelberger, H., Giloj, A., Werle, D., & Schmid, K. (2018, August). A collection of software engineering challenges for big data system development. In 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) (pp. 362-369). IEEE.

Kumar, V. D., & Alencar, P. (2016, December). Software engineering for big data projects: Domains, methodologies and gaps. In 2016 IEEE International Conference on Big Data (Big Data) (pp. 2886-2895). IEEE.

Laigner, R., Kalinowski, M., Lifschitz, S., Monteiro, R. S., & de Oliveira, D. (2018, August). A systematic mapping of software engineering approaches to develop big data systems. In 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) (pp. 446-453). IEEE.

Otero, C. E., & Peter, A. (2014). Research directions for engineering big data analytics software. IEEE Intelligent Systems, 30(1), 13-19.

Segura, S., Fraser, G., Sanchez, A. B., & Ruiz-Cortés, A. (2016). A survey on metamorphic testing. IEEE Transactions on software engineering, 42(9), 805-824.

Shafi, A., Carpenter, B., & Baker, M. (2009). Nested parallelism for multi-core HPC systems using Java. Journal of Parallel and Distributed Computing, 69(6), 532-545.

Vardi, M. Y. (2001, April). Branching vs. linear time: Final showdown. In International conference on tools and algorithms for the construction and analysis of systems (pp. 1-22). Springer, Berlin, Heidelberg.

Vega-Gisbert, O., Roman, J. E., & Squyres, J. M. (2016). Design and implementation of Java bindings in Open MPI. Parallel Computing, 59, 1-20.

Published
2021-12-20
Section
Articles