Design of a tool for the classification of skin cancer images using Deep Neural Networks (DNN)

  • Diana Paola Merchán Vargas Universidad Industrial de Santander
  • Helis José Navarro Báez Universidad Industrial de Santander
  • Jaime Guillermo Barrero Pérez Universidad Industrial de Santander
  • Jeyson Arley Castillo Bohórquez Universidad Industrial de Santander
Keywords: skin cancer, , Deep Neural Networks (DNN), Dermatologists

Abstract

Skin cancer is one of the most common diseases in the world population. Usually, the diagnosis requires the acquisition of dermatoscopic images. Both biopsy and histopathology have been used in advanced stages. Its early detection is very important to increase patient life quality and life expectancy. In Colombia, the lack of qualified professionals and medical instruments difficulties this task. The automatic classification is a huge challenge, due to ample variety and morphology in skin lesions. Nowadays, Deep Learning reaches elevated accuracy levels in image classification tasks and is set to become a reliable solution for medical image classification. In this research, used these DNN advantages to build a convolutional neural network (CNN) trained with open source databases to the classification of skin lesions benign and malignant. After the training process, we develop an embedded system with raspberry Pi 3 B+ with a generic camera and implemented the CNN described in Python coded-based. For the benign and malignant classification, the prototype reached an accuracy level of 91.06% in the F1 score and a recall of 91.98%.

Downloads

Download data is not yet available.

Author Biographies

Diana Paola Merchán Vargas, Universidad Industrial de Santander

Ingeniera electrónica, Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones

Helis José Navarro Báez, Universidad Industrial de Santander

Ingeniero electrónico, Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones.

Jaime Guillermo Barrero Pérez, Universidad Industrial de Santander

Ingeniero electrónico MSc, Universidad industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones.

Jeyson Arley Castillo Bohórquez, Universidad Industrial de Santander

Ingeniero electrónico, Universidad Industrial de Santander, Facultad de Ingenierías Fisicomecánicas, Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones.

References

Castillo, J. A., Granados, Y. C., & Fajardo, C. A. (2020). Patient-specific detection of atrial fibrillation in segments of ecg signals using deep neural networks. Ciencia E Ingenieria Neogranadina, vol. 30, no. 1, 45–58.

Chanampe, H., Aciar, S., Vega, M. d., Molinari Sotomayor, J. L., Carrascosa, G., & Lorefice, A. (2019). Modelo de redes neuronales convolucionales profundas para la clasificacion de lesiones en ecograf´ ´ıas mamarias. in XXI Workshop de Investigadores en Ciencias de la Computacion (WICC´ 2019, Universidad Nacional de San Juan).

Chicco, D. J. (2020). The advantages of the matthews correlation coefficient (mcc) over f1 score and accuracy in binary classification evaluation. BMC genomics, vol. 21, no. 1, 6.

Diana, H. (2021). Tesisredes-dianahellis-2021/skincancerclassifier. Obtenido de https://github.com/TesisRedes-DianaHellis-2021?tab=repositorie

Gamerosa, P. C., & Tellez, J. E. (2016). El cancer de piel, un problema actual. Revista de la Facultad de Medicina UNAM, vol. 59, no. 2, 6–14.

Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Proceedings of the thirteenth international conference on artificial intelligence and statistics, 249–256.

Instituto de Hidrología, Meteorología y Estudios Ambientales. (2014). “Indice ultravioleta (iuv) - ideam. Obtenido de http://www.ideam.gov.co/web/tiempo-y-clima/indice-ultravioleta-iuv-

Kaggle. (s.f.). Skin Cancer ISIC. Obtenido de https://www.kaggle.com/nodoubttome/skin-cancer9-classesisic

Mao, H. H. (2020). A survey on self-supervised pre-training for sequential transfer learning in neural networks. arXiv preprint arXiv:2007.00800.

Mikołajczyk, A., & Grochowski, M. (2018). Data augmentation for improving deep learning in image classification problem. 2018 international interdisciplinary PhD workshop (IIPhDW). IEEE, 117–122.

Morocho Jiménez, J. I. (2019). Detección de tumores cutáneos malignos y benignos usando una red neuronal convolucional. Quito: B.S. thesis.

Ng, A., Besounda Mourris, Y., & Karantoforoosh, K. (2021). Deep learning. Obtenido de https://www.coursera.org/specializations/deep-learning

Pérez Lorenzo, C., & et al. (2019). Detección precoz de cáncer de piel en imágenes basado en redes convolucionales,. B.S. thesis.

Powers, D. M. (2010). Evaluation: from precesion, recall and f-measure to roc, informedness, makedness and correlation. arXiv preprint a arxiv, 16061.

Qin, Z., Yu, F., Liu, C., & Chen, X. (2018). How convolutional neural network see the world-a survey of convolutional neural network visualization methods. arXiv preprint arXiv:1804.11191.

Sanjay, M. (2018). Why and how to Cross Validate a Model? Obtenido de https://towardsdatascience.com/why-and-how-to-cross-validate-a-model-d6424b45261f

Shin, H.-C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., . . . Summers, R. M. (2016). Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning. IEEE transactions on medical imaging, vol. 35, no. 5, 1285–1298.

Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, vol. 6, no. 1,, 60.

Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, f-score and roc: a family of discriminant measures for performance evaluation. Australasian joint conference on artificial intelligence. Springer, 1015–1021.

Static Raspberrypi. (s.f.). Raspberry pi modelbplus product brief. Obtenido de https://static.raspberrypi.org/files/product-briefs/raspberry-pi-modelbplus-product-brief.pdf

Team, K. (s.f.). Keras documentation: Keras applications. Obtenido de https://keras.io/api/applications

Tschandl, P. (2018). The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Obtenido de https://doi.org/10.7910/DVN/DBW86T

Xia, B., Zhang, H., & Li, Q. L. (2015). Pets: A stable and accurate redictor of protein-protein interacting sites based on xtremely-randomized ree. IEEE Transactions on NanoBioscience, vol. 14, 1–1, 11 .

Published
2021-12-20
Section
Articles