Biomimetic materials and design

  • Murat Bengisu
Keywords: Biomimetic; biomimicry; materials; bioinspiration; biophilic

Abstract

The interdisciplinary field of biomimetics has been enjoying increasing attention in recent years. The scientific and industrial community understands that the harm we have been doing to nature can actually be solved by nature herself. Biomimetic design has also been gaining impetus thanks to new research and technologies. Biomimetics is not limited to form and aesthetics only but also makes use of a deeper understanding of functional aspects, processes and systems found in nature. This paper elaborates on five biomimetic approaches: imitation, inspiration, functional, process-based, and ecosystem-based. Short case studies explain how biomimetic research can help solve different problems in design.

References

Badarnah, L. & Kadri, U. (2014). A methodology for the generation of biomimetic design concepts. Architectural Science Review, 58(2), 120-133.

Benyus, J. M. (1997). Biomimicry. New York: William Morrow.

Benyus, J. (2008). A good place to settle: Biomimicry, biophila, and the return to nature’s inspiration to architecture. Biophilic design: The theory, science, and practice of bringing buildings to life. Hoboken, NJ: Wiley.

Bhushan, B. (2009). Biomimetics: lessons from nature–an overview. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367(1893), 1445-1486.

Frearson, A. (2016). EFFEKT designs villages that produce all food and energy. http://www.dezeen.com/2016/05/20/effekt-designs-regen-villages-produce-own-food-energydanish-pavilion-venice-architecture-biennale-2016/ accessed 30.05.2016

Garrod, R. P.; Harris, L. G.; Schofield, W. C. E.; McGettrick, J.; Ward, L. J.; Teare, D. O. H. & Badyal, J. P. S. (2007). Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir, 23(2), 689-693.

Jonsson, R. (2011). Philips Bio-light concept lights the home using bacteria. http://www.gizmag.com/philips-bio-light-concept-taps-bioluminescence-for-home-use/20632/ accessed 25.07.2016

Lepora, N. F.; Verschure, P. & Prescott, T. J. (2013). The state of the art in biomimetics. Bioinspir. Biomim. 8 (2013) 1-11.

Lombardi, L. & Hashi (2014). Sampuru: Japanese food models. https://www.tofugu.com/japan/sampuru/accessed 28.05.2016

Mattheck, C. & Tesari, I. (2002). Integrating biological optimisation methods into engineering design process. Design and Nature, 27-36.

Nørgaard, T. & Dacke, M. (2010). Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Frontiers in zoology, 7(1), 18.

Pedersen Zari, M. & Storey, J. B. (2007). An ecosystem based biomimetic theory for a regenerative built environment. In Sustainable Building Conference 07, Lisbon, Portugal.

Sağocak, M. (2003). Tasarım tarihi (design history). Bursa, Turkey: Vipaş.

Sung, D. (2016). Smart geometries for smart materials: taming thermobimetals to behave. Journal of Architectural Education, 70(1), 96-106.

Sung, K. D. (2012). Metal that breathes, TEDxUSC http://www.ted.com/talks/doris_kim_sung_metal_that_breathes, accessed 18.05.2016

TheUnseen (2015). TheUnseen Emporium. http://theunseenemporium.co.uk/ accessed 22 July 2016.

Torgal, J.A. F.P. et al. (2015). Biotechnologies and biomimetics for civil engineering. Heidelberg: Springer.

Vincent, J. F.; Bogatyreva, O. A.; Bogatyrev, N. R.; Bowyer, A. & Pahl, A. K. (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface. 3(9), 471-482.

Published
2019-09-26
How to Cite
Bengisu, M. (2019). Biomimetic materials and design. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (70), 97 a 103. https://doi.org/10.18682/cdc.vi70.1141