Biomimetic materials and design

  • Murat Bengisu
##plugins.pubIds.doi.readerDisplayName##: https://doi.org/10.18682/cdc.vi70.1141

Résumé

El campo interdisciplinario de la biomimética ha sido objeto de creciente atención en los últimos años. La comunidad científica e industrial entiende que el daño que hemos estado haciendo a la naturaleza puede ser resuelto por la naturaleza misma. El diseño biomimético también ha ido ganando impulso gracias a las nuevas investigaciones y tecnologías. La biomimética no se limita a la forma y la estética solamente, sino que también hace uso de una comprensión más profunda de los aspectos funcionales, procesos y sistemas encontrados en la naturaleza. Este artículo desarrolla cinco enfoques biomimé- ticos: imitación, inspiración, funcionalidad, basado en procesos y basado en ecosistemas. Los estudios de casos cortos explican cómo la investigación biomimética puede ayudar a resolver diferentes problemas en el diseño.

Références

Badarnah, L. & Kadri, U. (2014). A methodology for the generation of biomimetic design concepts. Architectural Science Review, 58(2), 120-133.

Benyus, J. M. (1997). Biomimicry. New York: William Morrow.

Benyus, J. (2008). A good place to settle: Biomimicry, biophila, and the return to nature’s inspiration to architecture. Biophilic design: The theory, science, and practice of bringing buildings to life. Hoboken, NJ: Wiley.

Bhushan, B. (2009). Biomimetics: lessons from nature–an overview. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 367(1893), 1445-1486.

Frearson, A. (2016). EFFEKT designs villages that produce all food and energy. http://www.dezeen.com/2016/05/20/effekt-designs-regen-villages-produce-own-food-energydanish-pavilion-venice-architecture-biennale-2016/ accessed 30.05.2016

Garrod, R. P.; Harris, L. G.; Schofield, W. C. E.; McGettrick, J.; Ward, L. J.; Teare, D. O. H. & Badyal, J. P. S. (2007). Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobic-superhydrophilic surfaces. Langmuir, 23(2), 689-693.

Jonsson, R. (2011). Philips Bio-light concept lights the home using bacteria. http://www.gizmag.com/philips-bio-light-concept-taps-bioluminescence-for-home-use/20632/ accessed 25.07.2016

Lepora, N. F.; Verschure, P. & Prescott, T. J. (2013). The state of the art in biomimetics. Bioinspir. Biomim. 8 (2013) 1-11.

Lombardi, L. & Hashi (2014). Sampuru: Japanese food models. https://www.tofugu.com/japan/sampuru/accessed 28.05.2016

Mattheck, C. & Tesari, I. (2002). Integrating biological optimisation methods into engineering design process. Design and Nature, 27-36.

Nørgaard, T. & Dacke, M. (2010). Fog-basking behaviour and water collection efficiency in Namib Desert Darkling beetles. Frontiers in zoology, 7(1), 18.

Pedersen Zari, M. & Storey, J. B. (2007). An ecosystem based biomimetic theory for a regenerative built environment. In Sustainable Building Conference 07, Lisbon, Portugal.

Sağocak, M. (2003). Tasarım tarihi (design history). Bursa, Turkey: Vipaş.

Sung, D. (2016). Smart geometries for smart materials: taming thermobimetals to behave. Journal of Architectural Education, 70(1), 96-106.

Sung, K. D. (2012). Metal that breathes, TEDxUSC http://www.ted.com/talks/doris_kim_sung_metal_that_breathes, accessed 18.05.2016

TheUnseen (2015). TheUnseen Emporium. http://theunseenemporium.co.uk/ accessed 22 July 2016.

Torgal, J.A. F.P. et al. (2015). Biotechnologies and biomimetics for civil engineering. Heidelberg: Springer.

Vincent, J. F.; Bogatyreva, O. A.; Bogatyrev, N. R.; Bowyer, A. & Pahl, A. K. (2006). Biomimetics: its practice and theory. Journal of the Royal Society Interface. 3(9), 471-482.

Publiée
2019-09-26