Biomimetics as a strategy for the development of bioinspired structures for energy absorption based on fruits

  • Antônio Roberto Miranda de Oliveira
Keywords: Biomimetics ; Bio;inspired structures ; Fruits ; Natural packaging ; Energy absorption ; Crashworthiness

Abstract

This review seeks to update our knowledge about fruits, your structures, your materials for development of bio-inspired products, and your respective applications involving energy absorption, and shock dissipation. In nature, we will find a multitude of biological structure that performs the function of protection and crashworthiness. This study focuses on one of the biologically most important functions found in the natural packaging –that consists of the direct or indirect protection against mechanical damage or other negative environmental influences that involving crashworthiness– as well as energy absorption. Through of the systematic literature review, which includes all peer-reviewed research, documents that are relevant to the objective to ensure a comprehensive search were selected 21 research studies. Three research databases were identified: (I) web of Science, (II) Scopus, and (III) Science Direct. Only primary empirical studies were included. The review identified several situations where Biomimetics and Bio-inspiration methodology are introduced for improvements and solving technological problems by analyzing, abstracting, adapting, and transposing biological principles, into the technical world. The results indicated that the structures based on fruits could improve the structure’s efficiency that has the role of providing an effective bio-inspired absorber for a multitude of product designs. Although there are several studies, more research is needed for use of new technologies and new settings to ensure recommendations that can implement the improvement of the development of design bio-inspired.

References

Antreich, S. J.; Xiao, N.; Huss, J. C.; Horbelt, N.; Eder, M.; Weinkamer, R., & Gierlinger, N. (2019). The Puzzle of the Walnut Shell: A Novel Cell Type with Interlocked Packing. Advanced Science, 1900644. https://doi:10.1002/advs.201900644

Benyus, J. M. (2002). Biomimicry: Innovation Inspired by Nature. Harper Perennial. Bührig-Polaczek, A.; Fleck, C.; Speck, T.; Schüler, P.; Fischer, S. F.; Caliaro, M., & Thielen, M. (2016). Biomimetic cellular metals—using hierarchical structuring for energy absorption.

Bioinspiration & Biomimetics, 11(4), 045002. https://doi:10.1088/1748-3190/11/4/045002 Conforto, E. C.; Amaral, D. C.; Silva, S. L. (2011); Roteiro para revisão bibliográfica sistemática: aplicação no desenvolvimento de produtos e gerenciamento de projetos. In: 8º.

Congresso Brasileiro de Gestão de Desenvolvimento de Produto - CBGDP 2011, Porto Alegre, RS, Brasil. Instituto de Gestão de Desenvolvimento do Produto – IGDP. Anais. Porto Alegre: IGDP. Website. https://repositorio.usp.br/item/002833837

Fischer, S. F.; Thielen, M.; Loprang, R. R.; Seidel, R.; Fleck, C.; Speck, T., & Bührig-Polaczek, A. (2010). Pummelos as Concept Generators for Biomimetically Inspired Low Weight Structures with Excellent Damping Properties. Advanced Engineering Materials, 12(12), B658–B663. https://doi:10.1002/adem.201080065

Fischer, S. F.; Thielen, M.; Weiß, P.; Seidel, R.; Speck, T.; Bührig-Polaczek, A., & Bünck, M. (2013). Production and properties of a precision-cast bio-inspired composite. Journal of Materials Science, 49(1), 43-51. https://doi:10.1007/s10853-013-7878-4

Flores-Johnson, E. A.; Carrillo, J. G.; Zhai, C. et al. Microstructure and mechanical properties of hard Acrocomia mexicana fruit shell. Sci Rep 8, 9668 (2018). https://doi.org/10.1038/ s41598-018-27282-8

Kaupp, G., & Naimi-Jamal, M. R. (2011). Nutshells’ mechanical response: from nanoindentation and structure to bionics models. Journal of Materials Chemistry, 21(23), 8389. https://doi:10.1039/c0jm03713c

Langella, C. (2019). Design & scienza. List. ISBN 8832080079. Li, T. T.; Wang, H.; Huang, S.-Y.; Lou, C.W., & Lin, J.-H. (2019). Bioinspired foam composites resembling pomelo peel: Structural design and compressive, bursting and cushioning properties. Composites Part B: Engineering, 172, 290–298. https://doi:10.1016/j.compositesb.2019.04.046

Looyrach, J.; Methacanon, P.; Gamonpilas, C.; Lekpittaya, P., & Lertworasirikul, A. (2015). Pomelo (Citrus maxima) Peel-Inspired Property for Development of Eco-Friendly LooseFill Foam. Key Engineering Materials, 659, 279-283. https://doi:10.4028/www.scientific.net/kem.659.279

Lu, C.; Hou, S.; Zhang, Z.; Chen, J.; Li, Q., & Han, X. (2019). The mystery of coconut overturns the crashworthiness design of composite materials. International Journal of Mechanical Sciences, 105244. https://doi:10.1016/j.ijmecsci.2019.105244

Oliveira, A. R. M. (2020). Immersive virtual reality environment as a strategic tool to enhance the user experience. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (87). https://doi.org/10.18682/cdc.vi87.3770

Org. Arruda et al. Tópicos em design: biomimética, sustentabilidade e novos materiais. Curitiba, PR: Insight, 2019. ISBN 978-85-62241-65-9.

Ortiz, J.; Zhang, G., & McAdams, D. A. (2018). Modeling of a Pomelo Peel Bioinspired Foam. Journal of Mechanical Design. https://doi:10.1115/1.4040911

Roehrs, Alex & André da Costa, Cristiano & Righi, Rodrigo & Farias, Kleinner. (2017). Personal Health Records: A Systematic Literature Review. Journal of Medical Internet Research. 19. e13. https://10.2196/jmir.5876.

San Ha, N.; Lu, G.; Shu, D., & Yu, T. X. (2019). Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). Journal of the Mechanical Behavior of Biomedical Materials, 103603. https://doi:10.1016/j.jmbbm.2019.103603

San Ha, N.; Lu, G.; Shu, D., & Yu, T. X. (2019). Mechanical properties and energy absorption characteristics of tropical fruit durian (Durio zibethinus). Journal of the Mechanical Behavior of Biomedical Materials, 103603. https://doi:10.1016/j.jmbbm.2019.103603

Sanchez, C.; Arribart, H., & Giraud Guille, M. M. (2005). Biomimetism and bioinspiration as tools for the design of innovative materials and systems. Nature Materials, 4(4), 277-288. https://doi:10.1038/nmat1339

Schäfer, I.; Mlikota, M.; Schmauder, S., & Weber, U. (2020). Modelling the damping response of biomimetic foams based on pomelo fruit. Computational Materials Science, 183, 109801. https://doi:10.1016/j.commatsci.2020.109801

Seidel, R.; Thielen, M.; Schmitt, C. A.; Bührig-Polaczek, C. Fleck & T. Speck. (2010). Fruit Walls And Nut Shells As An Inspiration For The Design Of Bio-inspired Impact Resistant Hierarchically Structured Materials. Design and Nature V. https://doi:10.2495/DN100371

Sonego, M.; Fleck, C., & Pessan, L. A. (2020). Hierarchical levels of organization of the Brazil nut mesocarp. Scientific Reports, 10(1). https://doi:10.1038/s41598-020-62245-y

Speck, T. et al. (2018). Biomechanics and Functional Morphology of Plants - Inspiration for Biomimetic Materials and Structures. Em: Geitmann A., Gril J. (eds) Plant Biomechanics. Springer, Cham. https://doi.org/10.1007/978-3-319-79099-2_18

Thielen, M.; Schmitt, C. N. Z.; Eckert, S.; Speck, T., & Seidel, R. (2013). Structure–function relationship of the foam-like pomelo peel (Citrus maxima) – an inspiration for the devel-opment of biomimetic damping materials with high energy dissipation. Bioinspiration & Biomimetics, 8(2), 025001. https://doi:10.1088/1748-3182/8/2/025001

Tung, C.-C.; Wang, H.-J., & Chen, P.-Y. (2020). Lightweight, compression-resistant cellular structures inspired from the infructescence of Liquidambar formosana. Journal of the Mechanical Behavior of Biomedical Materials, 103961. https://doi:10.1016/j.jmbbm.2020.103961

Van Opdenbosch, D.;Thielen, M.; Seidel, R.; Fritz-Popovski, G.; Fey, T.; Paris, O. & Zollfrank, C. (2012). The pomelo peel and derived nanoscale-precision gradient silica foams. Bioinspired, Biomimetic and Nanobiomaterials, 1(2), 117-122. https://doi:10.1680/bbn.11.00013

Wang, B.; Pan, B., & Lubineau, G. (2018). Morphological evolution and internal strain mapping of pomelo peel using X-ray computed tomography and digital volume correlation. Materials & Design, 137, 305-315. https://doi:10.1016/j.matdes.2017.10.038

Wang, H.; Li, T.-T.; Ren, H.; Peng, H.; Huang, S.-Y.; Lin, Q. & Lou, C.-W. (2019). Expanded Vermiculite-Filled Polyurethane Foam-Core Bionic Composites: Preparation and Thermal, Compression, and Dynamic Cushion Properties. Polymers, 11(6), 1028. https://doi:10.3390/polym11061028

Yang, Y.; Song, X.; Li, X.; Chen, Z.; Zhou, C.; Zhou, Q., & Chen, Y. (2018). Recent Progress in Biomimetic Additive Manufacturing Technology: From Materials to Functional Structures. Advanced Materials, 1706539. https://doi:10.1002/adma.201706539

Zhang, W.; Yin, S.; Yu, T. X., & Xu, J. (2019). Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb. International Journal of Impact Engineering, 125, 163-172. https://doi:10.1016/j.ijimpeng.2018.11.014

Zhao, N.; Wang, Z.; Cai, C.; Shen, H.; Liang, F.; Wang, D. & Xu, J. (2014). Bioinspired Materials: from Low to High Dimensional Structure. Advanced Materials, 26(41), 6994-7017. https://doi:10.1002/adma.201401718

Published
2021-12-28
How to Cite
Miranda de Oliveira, A. R. (2021). Biomimetics as a strategy for the development of bioinspired structures for energy absorption based on fruits. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (149). https://doi.org/10.18682/cdc.vi149.5523