Facilitando el aprendizaje de trigonometría a través de una interfaz tangible

  • Francisco Zamorano Urrutia
  • Catalina Cortés Loyola
  • Mauricio Herrera Marín
##plugins.pubIds.doi.readerDisplayName##: https://doi.org/10.18682/cdc.vi103.4158

Résumé

En educación matemática, estudios evidencian dificultades y desafíos en la enseñanza-aprendizaje de trigonometría en educación secundaria y superior, donde no se estimula al estudiante a obtener un entendimiento conceptual profundo de los conceptos. Considerando su relevancia para diversas disciplinas, es necesario implementar nuevos acercamientos a su enseñanza, donde se privilegie un rol activo del estudiante en su propio aprendizaje. Diversos estudios demuestran que la incorporación de tecnologías digitales influyen positivamente aprendizaje de los alumnos, sin embargo, la mayoría de las tecnologías existentes responden al paradigma de interacción tradicional con un computador, donde no se considera el uso del cuerpo y de los múltiples sentidos. Las Interfaces Tangibles (TUI) en cambio, pueden albergar interacciones corporales, brindando directo tributo a la teoría de la Cognición Corporal. Sin embargo existe un vacío en la aplicación de TUI para la educación de trigonometría. Esta investigación consistió en diseñar y validar una interfaz tangible para la enseñanza-aprendizaje de trigonometría inicial. La interfaz alberga una experiencia de aprendizaje que privilegia la exploración, el uso de la intuición, y fomenta el aprendizaje colaborativo. Se realizó un Pre-Test diagnóstico con 119 estudiantes para determinar conocimientos previos dando un rendimiento promedio de 29.1%. Luego de dos intervenciones con la interfaz propuesta, los resultados de un Post-Test muestran un incremento del rendimiento en un 37.1%, lo que valida la efectividad pedagógica de la interfaz y experiencia pedagógica para el aprendizaje de conceptos básicos de trigonometría.

Références

Ambrose, S., Bridges, M., Dipietro, M., Lovett, M., & Norman, M. (2010). Seven ResearchBased Principles for Smart Teaching (Vol. 48). https://doi.org/10.1002/mop.21454

Bravo, U. (2016). Visual analogies: representation of the design process and its application in the field of education. Base Diseño e Innovación, 2, 42-49.

Brown, S. A. (2006). The trigonometric connection: Students’ understanding of sine and cosine. In Proceedings of 30th Conference of the International Group for the Psychology of Mathematics Education, vol. 1.

Camilleri, M. A., & Camilleri, A. C. (2017). Digital Learning Resources and Ubiquitous Technologies in Education. Technology, Knowledge and Learning, 22(1), 65-82. https://doi.org/10.1007/s10758-016-9287-7

Chin, J. P., Diehl, V. A., & Norman, L. K. (1988). Development of an instrument measuring user satisfaction of the human-computer interface. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’88. https://doi.org/10.1145/57167.57203

Council, D. (2014). Innovation by Design. Customer Relationship Management, p. 23. Design Council.

Curri, E. (2012). Using Computer Technology in Teaching and Learning Mathematics in an Albanian Upper Secondary School: The Implementation of SimReal in Trigonometry Lessons. Universitetet i Agder; University of Agder.

De Raffaele, C., Smith, S., & Gemikonakli, O. (2018). An Active Tangible User Interface Framework for Teaching and Learning Artificial Intelligence. Proceedings of the 2018 Conference on Human Information Interaction&Retrieval - IUI ’18, 535-546. https://doi.org/10.1145/3172944.3172976

Dockendorff, M., & Solar, H. (2018). ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra. International Journal of Mathematical Education in Science and Technology, 49(1), 66-84. https://doi.org/10.1080/0020739X.2017.1341060

Dodge, E., & Lakoff, G. (2005). Image schemas: From linguistic analysis to neural grounding. From Perception to Meaning: Image Schemas in Cognitive Linguistics, 57-91.

Driscoll, M. P. (2000). Psychology of learning for Instruction (2nd ed.). Allyn & Bacon.

Dumas, J. S., & Redish, J. (1999). A practical guide to usability testing. Intellect books.

Font, V., Bolite, J., & Acevedo, J. (2010). Metaphors in mathematics classrooms: Analyzing the dynamic process of teaching and learning of graph functions. Educational Studies in Mathematics, 75(2), 131–152. https://doi.org/10.1007/s10649-010-9247-4

Gentner, D., & Nielson, J. (1996). Anti-Mac Interface. Communications of the ACM, 39(8), 70-82. https://doi.org/10.1145/232014.232032

Hollan, J., Hutchins, E., & Norman, D. (1985). Direct manipulation interfaces. HumanComputer Interaction, 1, 311-338.

Hornecker, E., & Buur, J. (2006). Getting a grip on tangible interaction. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’06, 437-446. https://doi.org/10.1145/1124772.1124838

Houde, S., & Hill, C. (1997). What do Prototypes Prototype? Handbook of HumanComputer Interaction, 367-381. https://doi.org/10.1016/B978-044481862-1.50082-0

Ishii, H., & Ullmer, B. (1997). Tangible Bits: Towards Seamless Interfaces Between People, Bits and Atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 234-241. https://doi.org/10.1145/258549.258715

Jetter, H. C., Reiterer, H., & Geyer, F. (2014). Blended Interaction: Understanding natural human-computer interaction in post-WIMP interactive spaces. Personal and Ubiquitous

Computing, 18(5), 1139-1158. https://doi.org/10.1007/s00779-013-0725-4

Johnson, M. (2013). The body in the mind: The bodily basis of meaning, imagination, and reason. University of Chicago Press.

Kepceoğlu, I., & Yavuz, I. (2016). Teaching a concept with GeoGebra: Periodicity of trigonometric functions. Educational Research and Reviews, 11(8), 573-581. https://doi.org/10.5897/err2016.2701

Lakoff, G. (2009). The Neural Theory of Metaphor. Ssrn. https://doi.org/10.2139/ssrn.1437794

Lakoff, G., & Núñez, R. E. (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being (1st ed.). New York, NY, USA: Basic Books.

Marshall, P. (2007). Do tangible interfaces enhance learning? Proceedings of the 1st International Conference on Tangible and Embedded Interaction, 163-170. https://doi.org/10.1145/1226969.1227004

Mesa, V., & Goldstein, B. (2016). Conceptions of Angles, Trigonometric Functions, and Inverse Trigonometric Functions in College Textbooks. International Journal of Research in Undergraduate Mathematics Education, 3(2), 338-354. https://doi.org/10.1007/s40753-016-0042-1

Mushipe, M., & Ogbonnaya, U. I. (2019). Geogebra and Grade 9 Learners’ Achievement in Linear Functions. International Journal of Emerging Technologies in Learning (IJET), 14(08), 206-219. https://doi.org/10.3991/ijet.v14i08.9581

Pecher, D., Boot, I., & Van Dantzig, S. (2011). Abstract Concepts: Sensory-Motor Grounding, Metaphors, and Beyond. Psychology of Learning and Motivation, 54, 217-248. https://doi.org/10.1016/B978-0-12-385527-5.00007-3

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., & Eisenberg, M. (2005). Design Principles for Tools to Support Creative Thinking. NSF Workshop Report on Creativity Support Tools, (Creativity Support Tools), 25–35.

Scarlatos, L. (2002). An application of tangible interfaces in collaborative learning environments. SIGGRAPH ’02, 125-126. https://doi.org/10.1145/1242073.1242141

Shaer, O., & Hornecker, E. (2010). Tangible User Interfaces: Past, Present, and Future Directions. Foundations and Trends® in Human–Computer Interaction, 3(1-2), 1-137. https://doi.org/10.1561/1100000026

Skinner, B. F. (1976). About Behaviorism. Vintage.

Thompson, P. W., Carlson, M. P., & Silverman, J. (2007). The design of tasks in support of teachers’ development of coherent mathematical meanings. Journal of Mathematics Teacher Education, 10(4–6), 415-432. https://doi.org/10.1007/s10857-007-9054-8

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard university press.

Weber, K. (2005). Students’ understanding of trigonometric functions. Mathematics Education Research Journal, 17(3), 91-112. https://doi.org/10.1007/BF03217423

Zengin, Y. (2018). Incorporating the dynamic mathematics software GeoGebra into a history of mathematics course. International Journal of Mathematical Education in Science and Technology, 49(7), 1083-1098. https://doi.org/10.1080/0020739X.2018.1431850

Publiée
2020-09-09