Facilitando el aprendizaje de trigonometría a través de una interfaz tangible

  • Francisco Zamorano Urrutia
  • Catalina Cortés Loyola
  • Mauricio Herrera Marín
Palavras-chave: trigonometria ; design de interação ; aprendizagem ; interfaces tangíveis ; cognição corporal

Resumo

No ensino de matemática, os estudos mostram dificuldades e desafios no ensino-aprendizagem da trigonometria no ensino médio e superior, onde o aluno não é incentivado a obter uma profunda compreensão conceitual dos conceitos. Considerando a sua relevância para várias disciplinas, é necessário implementar novas abordagens ao seu ensino, onde é privilegiado um papel ativo do aluno em sua própria aprendizagem. Vários estudos mostram que a incorporação de tecnologias digitais influencia positivamente a aprendizagem dos alunos, no entanto, a maioria das tecnologias existentes responde ao paradigma da interação tradicional com um computador, onde o uso do corpo e dos múltiplos sentidos não é considerado. As interfaces tangíveis (UIS), por outro lado, podem abrigar interações corporais, fornecendo um tributo direto à teoria da cognição corporal. No entanto, existe uma lacuna na aplicação da TUI para o ensino de trigonometria. Esta pesquisa consistiu em projetar e validar uma interface tangível para o ensino-aprendizagem da trigonometria inicial. A interface abriga uma experiência de aprendizado que privilegia a exploração, o uso da intuição e promove o aprendizado colaborativo. Foi realizado um pré-teste de diagnóstico com 119 alunos para determinar o conhecimento prévio, com um rendimento médio de 29,1%. Após duas intervenções com a interface proposta, os resultados de um pós-teste mostram um aumento de 37,1% no desempenho, o que valida a eficácia pedagógica da interface e a experiência pedagógica na aprendizagem de conceitos básicos de trigonometria.

Referências

Ambrose, S., Bridges, M., Dipietro, M., Lovett, M., & Norman, M. (2010). Seven ResearchBased Principles for Smart Teaching (Vol. 48). https://doi.org/10.1002/mop.21454

Bravo, U. (2016). Visual analogies: representation of the design process and its application in the field of education. Base Diseño e Innovación, 2, 42-49.

Brown, S. A. (2006). The trigonometric connection: Students’ understanding of sine and cosine. In Proceedings of 30th Conference of the International Group for the Psychology of Mathematics Education, vol. 1.

Camilleri, M. A., & Camilleri, A. C. (2017). Digital Learning Resources and Ubiquitous Technologies in Education. Technology, Knowledge and Learning, 22(1), 65-82. https://doi.org/10.1007/s10758-016-9287-7

Chin, J. P., Diehl, V. A., & Norman, L. K. (1988). Development of an instrument measuring user satisfaction of the human-computer interface. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’88. https://doi.org/10.1145/57167.57203

Council, D. (2014). Innovation by Design. Customer Relationship Management, p. 23. Design Council.

Curri, E. (2012). Using Computer Technology in Teaching and Learning Mathematics in an Albanian Upper Secondary School: The Implementation of SimReal in Trigonometry Lessons. Universitetet i Agder; University of Agder.

De Raffaele, C., Smith, S., & Gemikonakli, O. (2018). An Active Tangible User Interface Framework for Teaching and Learning Artificial Intelligence. Proceedings of the 2018 Conference on Human Information Interaction&Retrieval - IUI ’18, 535-546. https://doi.org/10.1145/3172944.3172976

Dockendorff, M., & Solar, H. (2018). ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra. International Journal of Mathematical Education in Science and Technology, 49(1), 66-84. https://doi.org/10.1080/0020739X.2017.1341060

Dodge, E., & Lakoff, G. (2005). Image schemas: From linguistic analysis to neural grounding. From Perception to Meaning: Image Schemas in Cognitive Linguistics, 57-91.

Driscoll, M. P. (2000). Psychology of learning for Instruction (2nd ed.). Allyn & Bacon.

Dumas, J. S., & Redish, J. (1999). A practical guide to usability testing. Intellect books.

Font, V., Bolite, J., & Acevedo, J. (2010). Metaphors in mathematics classrooms: Analyzing the dynamic process of teaching and learning of graph functions. Educational Studies in Mathematics, 75(2), 131–152. https://doi.org/10.1007/s10649-010-9247-4

Gentner, D., & Nielson, J. (1996). Anti-Mac Interface. Communications of the ACM, 39(8), 70-82. https://doi.org/10.1145/232014.232032

Hollan, J., Hutchins, E., & Norman, D. (1985). Direct manipulation interfaces. HumanComputer Interaction, 1, 311-338.

Hornecker, E., & Buur, J. (2006). Getting a grip on tangible interaction. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI ’06, 437-446. https://doi.org/10.1145/1124772.1124838

Houde, S., & Hill, C. (1997). What do Prototypes Prototype? Handbook of HumanComputer Interaction, 367-381. https://doi.org/10.1016/B978-044481862-1.50082-0

Ishii, H., & Ullmer, B. (1997). Tangible Bits: Towards Seamless Interfaces Between People, Bits and Atoms. Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, 234-241. https://doi.org/10.1145/258549.258715

Jetter, H. C., Reiterer, H., & Geyer, F. (2014). Blended Interaction: Understanding natural human-computer interaction in post-WIMP interactive spaces. Personal and Ubiquitous

Computing, 18(5), 1139-1158. https://doi.org/10.1007/s00779-013-0725-4

Johnson, M. (2013). The body in the mind: The bodily basis of meaning, imagination, and reason. University of Chicago Press.

Kepceoğlu, I., & Yavuz, I. (2016). Teaching a concept with GeoGebra: Periodicity of trigonometric functions. Educational Research and Reviews, 11(8), 573-581. https://doi.org/10.5897/err2016.2701

Lakoff, G. (2009). The Neural Theory of Metaphor. Ssrn. https://doi.org/10.2139/ssrn.1437794

Lakoff, G., & Núñez, R. E. (2000). Where Mathematics Comes From: How the Embodied Mind Brings Mathematics into Being (1st ed.). New York, NY, USA: Basic Books.

Marshall, P. (2007). Do tangible interfaces enhance learning? Proceedings of the 1st International Conference on Tangible and Embedded Interaction, 163-170. https://doi.org/10.1145/1226969.1227004

Mesa, V., & Goldstein, B. (2016). Conceptions of Angles, Trigonometric Functions, and Inverse Trigonometric Functions in College Textbooks. International Journal of Research in Undergraduate Mathematics Education, 3(2), 338-354. https://doi.org/10.1007/s40753-016-0042-1

Mushipe, M., & Ogbonnaya, U. I. (2019). Geogebra and Grade 9 Learners’ Achievement in Linear Functions. International Journal of Emerging Technologies in Learning (IJET), 14(08), 206-219. https://doi.org/10.3991/ijet.v14i08.9581

Pecher, D., Boot, I., & Van Dantzig, S. (2011). Abstract Concepts: Sensory-Motor Grounding, Metaphors, and Beyond. Psychology of Learning and Motivation, 54, 217-248. https://doi.org/10.1016/B978-0-12-385527-5.00007-3

Resnick, M., Myers, B., Nakakoji, K., Shneiderman, B., Pausch, R., Selker, T., & Eisenberg, M. (2005). Design Principles for Tools to Support Creative Thinking. NSF Workshop Report on Creativity Support Tools, (Creativity Support Tools), 25–35.

Scarlatos, L. (2002). An application of tangible interfaces in collaborative learning environments. SIGGRAPH ’02, 125-126. https://doi.org/10.1145/1242073.1242141

Shaer, O., & Hornecker, E. (2010). Tangible User Interfaces: Past, Present, and Future Directions. Foundations and Trends® in Human–Computer Interaction, 3(1-2), 1-137. https://doi.org/10.1561/1100000026

Skinner, B. F. (1976). About Behaviorism. Vintage.

Thompson, P. W., Carlson, M. P., & Silverman, J. (2007). The design of tasks in support of teachers’ development of coherent mathematical meanings. Journal of Mathematics Teacher Education, 10(4–6), 415-432. https://doi.org/10.1007/s10857-007-9054-8

Vygotsky, L. S. (1980). Mind in society: The development of higher psychological processes. Harvard university press.

Weber, K. (2005). Students’ understanding of trigonometric functions. Mathematics Education Research Journal, 17(3), 91-112. https://doi.org/10.1007/BF03217423

Zengin, Y. (2018). Incorporating the dynamic mathematics software GeoGebra into a history of mathematics course. International Journal of Mathematical Education in Science and Technology, 49(7), 1083-1098. https://doi.org/10.1080/0020739X.2018.1431850

Publicado
2020-09-09
Como Citar
Zamorano Urrutia, F., Cortés Loyola , C., & Herrera Marín, M. (2020). Facilitando el aprendizaje de trigonometría a través de una interfaz tangible. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (103). https://doi.org/10.18682/cdc.vi103.4158