Mycelium-grown composites as a multidisciplinary way for the development of innovative materials for design and architecture

  • Carlo Santulli
Palabras clave: Materiales cultivados a partir de micelio ; Micocompuestos ; Residuos agrícolas ; Biomasa ; Paja ; Bambú

Resumen

Los composites cultivados a partir de micelio, también denominados “mico-composites”, han suscitado una gran atención en los últimos años, por su continua transformación en materiales técnicos, en busca de un posicionamiento y papel adecuados en el campo de la arquitectura y el diseño. 

Citas

Abhijith, R., Ashok, A., & Rejeesh, C. R. (2018). Sustainable packaging applications from mycelium to substitute polystyrene: a review. Materials Today: Proceedings, 5(1), 2139-2145.

Aiduang, W., Kumla, J., Srinuanpan, S., Thamjaree, W., Lumyong, S., & Suwannarach, N. (2022). Mechanical, physical, and chemical properties of mycelium-based composites produced from various lignocellulosic residues and fungal species. Journal of Fungi, 8(11), 1125.

Angelova, G., Brazkova, M., Stefanova, P., Blazheva, D., Vladev, V., Petkova, N., ... & Krastanov, A. (2021). Waste rose flower and lavender straw biomass—An innovative lignocellulose feedstock for mycelium bio-materials development using newly isolated Ganoderma resinaceum GA1M. Journal of Fungi, 7(10), 866.

Attias, N., Danai, O., Abitbol, T., Tarazi, E., Ezov, N., Pereman, I., & Grobman, Y. J. (2020). Mycelium bio-composites in industrial design and architecture: Comparative review and experimental analysis. Journal of Cleaner Production, 246, 119037.

Bellettini, M. B., Bellettini, S., Vítola, F. M. D., Fiorda, F. A., Júnior, A. M., & Soccol, C. R. (2017). Residual compost from the production of Bactris gasipaes Kunth and Pleurotus ostreatus as soil conditioners for Lactuca sativa ‘Veronica’. Semina: Ciências Agrárias, 38(2), 581-593.

Bitting, S., Derme, T., Lee, J., Van Mele, T., Dillenburger, B., & Block, P. (2022). Challenges and opportunities in scaling up architectural applications of mycelium-based materials with digital fabrication. Biomimetics, 7(2), 44.

Brazdausks, P., Paze, A., Rizhikovs, J., Puke, M., Meile, K., Vedernikovs, N., Tupciauskas, R., Andzs, M. (2016). Effect of aluminium sulphate-catalysed hydrolysis process on furfural yield and cellulose degradation of Cannabis sativa L. shives. Biomass and Bioenergy, 89, 98–104.

Bruscato, C., Malvessi, E., Brandalise, R. N., & Camassola, M. (2019). High performance of macrofungi in the production of mycelium-based biofoams using sawdust—Sustainable technology for waste reduction. Journal of Cleaner Production, 234, 225-232.

Cecchini, C. (2017). Bioplastics made from upcycled food waste. Prospects for their use in the field of design. The Design Journal, 20(sup1), S1596-S1610.

César, E., Castillo-Campohermoso, M. A., Ledezma-López, A. S., Villarreal-Cárdenas, L. A., Montoya, L., Bandala, V. M., & Rodríguez-Hernández, A. M. (2023). Guayule bagasse to make mycelium composites: An alternative to enhance the profitability of a sustainable guayule crop. Biocatalysis and Agricultural Biotechnology, 102602.

Dias, J., Broce, R., & De Juan Creix, N. (2022) Exploring material properties and fabrication processes of a mycelium based surfboard. Feedback. DOI: 10.18258/27341.

Elsacker, E., Søndergaard, A., Van Wylick, A., Peeters, E., & De Laet, L. (2021). Growing living and multifunctional mycelium composites for large-scale formwork applications using robotic abrasive wire-cutting. Construction and Building Materials, 283, 122732.

Elsacker, E., Vandelook, S., Brancart, J., Peeters, E., & De Laet, L. (2019). Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS One, 14(7), e0213954.

Elsacker, E., Vandelook, S., Van Wylick, A., Ruytinx, J., De Laet, L., & Peeters, E. (2020). A comprehensive framework for the production of mycelium-based lignocellulosic composites. Science of The Total Environment, 725, 138431.

Gabrielli, S., Caviglia, M., Pastore, G., Marcantoni, E., Nobili, F., Bottoni, L., ... & Santulli, C. (2022). Chemical, thermal and mechanical characterization of licorice root, willow, holm oak, and palm leaf waste incorporated into maleated polypropylene (MAPP). Polymers, 14(20), 4348.

Gan, J. K., Soh, E., Saeidi, N., Javadian, A., Hebel, D. E., & Le Ferrand, H. (2022). Temporal characterization of biocycles of mycelium-bound composites made from bamboo and Pleurotus ostreatus for indoor usage. Scientific Reports, 12(1), 19362.

Ghazvinian, A., Farrokhsiar, P., Vieira, F., Pecchia, J., & Gursoy, B. (2019). Mycelium-based bio-composites for architecture: assessing the effects of cultivation factors on compressive strength. Materials Research and Innovation, 2, 505-514.

Ghazvinian, A., & Gürsoy, B. (2022). Mycelium-based composite Graded materials: Assessing the effects of time and substrate mixture on mechanical properties. Biomimetics, 7(2), 48.

Gnip, I., Vėjelis, S., & Vaitkus, S. (2012). Thermal conductivity of expanded polystyrene (EPS) at 10 C and its conversion to temperatures within interval from 0 to 50 C. Energy and Buildings, 52, 107-111.

Heisel, F., Schlesier, K., Lee, J., Rippmann, M., Saeidi, N., Javadian, A., ... & Block, P. (2017, December). Design of a load-bearing mycelium structure through informed structural engineering. In World Congress on Sustainable Technologies (WCST-2017), (ss. 45-49).

Irbe, I., Loris, G.D., Filipova, I., Andze, L., Skute, M. (2022). Characterization of self-growing biomaterials made of fungal mycelium and various lignocellulose-containing ingredients. Materials, 15, 7608.

Islam, M. R., Tudryn, G., Bucinell, R., Schadler, L., & Picu, R. C. (2018). Mechanical behavior of mycelium-based particulate composites. Journal of Materials Science, 53, 16371-16382.

Javadian, A., Le Ferrand, H., Hebel, D. E., & Saeidi, N. (2020). Application of mycelium-bound composite materials in construction industry: a short review. SOJ Materials Science and Engineering, 7, 1-9.

Jiang, L., Walczyk, D., & McIntyre, G. (2017). A new approach to manufacturing biocomposite sandwich structures: Investigation of preform shell behavior. Journal of Manufacturing Science and Engineering, 139(2), 021014.

Jones, R. J., Delesky, E. A., Cook, S. M., Cameron, J. C., Hubler, M. H., & Srubar III, W. V. (2022). Engineered living materials for construction. In Engineered Living Materials (pp. 187-216). Cham: Springer International Publishing.

Jones, M., Mautner, A., Luenco, S., Bismarck, A., & John, S. (2020). Engineered mycelium composite construction materials from fungal biorefineries: A critical review. Materials & Design, 187, 108397.

Joshi, K., Meher, M. K., & Poluri, K. M. (2020). Fabrication and characterization of bioblocks from agricultural waste using fungal mycelium for renewable and sustainable applications. ACS Applied Bio Materials, 3(4), 1884-1892.

Kanu, N. J., Gupta, E., Vates, U. K., & Singh, G. K. (2019). Self-healing composites: A stateof-the-art review. Composites Part A: Applied Science and Manufacturing, 121, 474-486.

Karana, E., Blauwhoff, D., Hultink, E. J., & Camere, S. (2018). When the material grows: A case study on designing (with) mycelium-based materials. International Journal of Design, 12(2), 119-136.

Ke, H. M., & Tsai, I. J. (2022). Understanding and using fungal bioluminescence–recent progress and future perspectives. Current Opinion in Green and Sustainable Chemistry, 33, 100570.

Krundaeva, A., De Bruyne, G., Gagliardi, F., Van Paepegem, W. (2016) Dynamic compressive strength and crushing properties of expanded polystyrene foam for different strain rates and different temperatures. Polymer Testing 55, 61-68.

Kumar, A., Kumar, V., & Singh, B. (2021). Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. International Journal of Biological Macromolecules, 169, 564-582.

Kuribayashi, T., Lankinen, P., Hietala, S., & Mikkonen, K. S. (2022). Dense and continuous networks of aerial hyphae improve flexibility and shape retention of mycelium composite in the wet state. Composites Part A: Applied Science and Manufacturing, 152, 106688.

Loris, G.D., Irbe, I., Skute, M., Filipova, I., Andze, L., Verovkins A. (2022). Hemp shives mycelium composites-an alternative material for traditionally used plastic packaging. In Materials Science Forum (Vol. 1071, pp. 126-138). Trans Tech Publications Ltd.

Manan, S., Ullah, M. W., Ul-Islam, M., Atta, O. M., & Yang, G. (2021). Synthesis and applications of fungal mycelium-based advanced functional materials. Journal of Bioresources and Bioproducts, 6(1), 1-10.

Meyer, V., Basenko, E. Y., Benz, J. P., Braus, G. H., Caddick, M. X., Csukai, M., ... & Wösten, H. A. (2020). Growing a circular economy with fungal biotechnology: a white paper. Fungal biology and biotechnology, 7(1), 1-23.

Mohanavel, V., Sathish, T., Ravichandran, M., Ganeshan, P., Kumar, M. R., & Subbiah, R. (2021, September). Experimental investigations on mechanical properties of cotton/ hemp fiber reinforced epoxy resin hybrid composites. In Journal of Physics: Conference Series (Vol. 2027, No. 1, p. 012015). IOP Publishing.

Mogu.bio (2019), Material Data Sheet Acoustic Mycelium-based Products Nashiruddin, N. I., Chua, K. S., Mansor, A. F., A. Rahman, R., Lai, J. C., Wan Azelee, N. I., & El Enshasy, H. (2022). Effect of growth factors on the production of mycelium-based biofoam. Clean Technologies and Environmental Policy, 24(1), 351-361.

Özdemir, E., Saeidi, N., Javadian, A., Rossi, A., Nolte, N., Ren, S., ... & Eversmann, P. (2022). Wood-veneer-reinforced mycelium composites for sustainable building components. Biomimetics, 7(2), 39.

Pollini, B. (2021), Sustainable Design, biomimicry and biomaterials: exploring interactivity, connectivity and smartness in nature, Chapter 4 (pp. 60-73) in “ICS MATERIALS. Interactive, connected, and smart materials” edited by Valentina Rognoli and Venere Ferraro, Franco Angeli, Milano, Italy. ISBN 9788835115649.

Pompei, S., Tirillò, J., Sarasini, F., & Santulli, C. (2020). Development of Thermoplastic Starch (TPS) Including Leather Waste Fragments. Polymers, 12(8), 1811.

Rafiee, K., Schritt, H., Pleissner, D., Kaur, G., & Brar, S. K. (2021). Biodegradable green composites: It’s never too late to mend. Current Opinion in Green and Sustainable Chemistry, 30, 100482.

Rahman, A., Fehrenbach, J., Ulven, C., Simsek, S., & Hossain K. (2021) Utilization of wheatbran cellulosic fibers as reinforcement in bio-based polypropylene composite. Industrial Crops and Products 172, 114028.

Ridzqo, I. F., Susanto, D., Panjaitan, T. H., & Putra, N. (2020). Sustainable material: Development experiment of bamboo composite through biologically binding mechanism. In IOP Conference Series: Materials Science and Engineering (Vol. 713, No. 1, p. 012010). IOP Publishing.

Rigobello, A., Colmo, C., & Ayres, P. (2022). Effect of composition strategies on mycelium-based composites flexural behaviour. Biomimetics, 7(2), 53.

Saravanan, A., Sundararaman, T. R., Jeevanantham, S., Karishma, S., Kumar, P. S., & Yaashikaa, P. R. (2020). Effective adsorption of Cu (II) ions on sustainable adsorbent derived from mixed biomass (Aspergillus campestris and agro waste): optimization, isotherm and kinetics study. Groundwater for Sustainable Development, 11, 100460.

Scardecchia, S., Vita, A., Santulli, C., & Forcellese, A. (2020). A material proposed for re-use of hemp shives as a waste from fiber production. Materials Today: Proceedings, 31, S213-S216.

Sfeir, N., Chapuset, T., Palu, S., Lançon, F., Amor, A., García, J. G., & Snoeck, D. (2014). Technical and economic feasibility of a guayule commodity chain in Mediterranean Europe. Industrial Crops and Products, 59, 55-62.

Shao, G. B., Yang, P., & Jiang, W. X. (2016, June). Research and preparation of mycelium-soybean straw composite materials. In 2nd Annual International Conference on Advanced Material Engineering (AME 2016) (pp. 9-15). Atlantis Press.

Silverman, J., Cao, H., & Cobb, K. (2020). Development of mushroom mycelium composites for footwear products. Clothing and Textiles Research Journal, 38(2), 119-133.

Singh, S., Kumar, V., Dhanjal, D. S., Thotapalli, S., & Singh, J. (2020). Importance and recent aspects of fungal-based biosensors. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 301-309). Elsevier.

Sisti, L., Gioia, C., Totaro, G., Verstichel, S., Cartabia, M., Camere, S., & Celli, A. (2021). Valorization of wheat bran agro-industrial byproduct as an upgrading filler for mycelium-based composite materials. Industrial Crops and Products, 170, 113742.

Siwulski, M., Sobieralski, K., & Mańkowski, J. (2010). Comparison of mycelium growth of selected species of cultivated mushrooms on textile industry wastes. Acta Scientiarum Polonorum Hortorum Cultus, 9(3), 37-43.

Soh, E., Chew, Z.Y., Saeidi, N., Javadian, A., Hebel, D., & Le Ferrand, H (2020). Development of an extrudable paste to build mycelium-bound composites. Materials and Design, 195, 109058.

Sun, W., Tajvidi, M., Hunt, C. G., Cole, B. J., Howel, C., Gardner, D. J., & Wang, J. (2022a). Fungal and enzymatic pretreatments in hot-pressed lignocellulosic bio-composites: A critical review. Journal of Cleaner Production, 131659.

Sun, W., Tajvidi, M., Howell, C., & Hunt, C. G. (2022b). Insight into mycelium-lignocellulosic bio-composites: Essential factors and properties. Composites Part A: Applied Science and Manufacturing, 161, 107125.

Sydor, M., Bonenberg, A., Doczekalska, B., & Cofta, G. (2022). Mycelium-based composites in art, architecture, and interior design: a review. Polymers, 14(1), 145.

Yang, Z., Zhang, F., Still, B., White, M., & Amstislavski, P. (2017). Physical and mechanical properties of fungal mycelium-based biofoam. Journal of Materials in Civil Engineering, 29(7), 04017030.

Zimele, Z., Irbe, I., Grinins, J., Bikovens, O., Verovkins, A., & Bajare, D. (2020). Novel mycelium-based biocomposites (Mbb) as building materials. Journal of Renewable Materials, 8(9), 1067-1076.
Publicado
2023-05-24
Cómo citar
Santulli, C. (2023). Mycelium-grown composites as a multidisciplinary way for the development of innovative materials for design and architecture. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (190). https://doi.org/10.18682/cdc.vi190.9537