The open rapid access of AI generative design tools (Text to 3D) to morphological expression of the cortical-trabecular hierarchical

  • Yomna K. Abdallah
  • Alberto T. Estévez
##plugins.pubIds.doi.readerDisplayName##: https://doi.org/10.18682/cdc.vi262.12241

Résumé

Artificial Intelligence generative design tools are developing rapidly and revolutionizing their application in the design to fabrication processes.

Références

Abdallah, Y.K. and Estévez, A.T. (2023). Biomaterials Research-Driven Design Visualized by AI Text-Prompt-Generated Images. Designs, 7(2), 48. https://doi.org/10.3390/designs7020048.

Estévez, A.T. and Abdallah, Y.K. (2024). Biomimetic Approach for Enhanced Mechanical Properties and Stability of Self-Mineralized Calcium Phosphate Dibasic–Sodium Alginate– Gelatine Hydrogel as Bone Replacement and Structural Building Material. Processes, 12, 944. https://doi.org/10.3390/pr12050944

Bhat, S.F., Birkl, R., Wofk, D., Wonka, P. and Müller, M. (2023). ZoeDepth: Zero-shot Transfer by Combining Relative and Metric Depth. [online] arXiv.org. https://doi.org/10.48550/arXiv.2302.12288.

Chun, E., Lin, C.Z., Matthew, Nagano, K., Pan, B., Shalini de Mello, Gallo, O., Leonidas Guibas, Tremblay, J., Khamis, S., Karras, T. and Wetzstein, G. (2022). Efficient Geometry-aware 3D Generative Adversarial Networks. https://doi.org/10.1109/cvpr52688.2022.01565.

Gao, J., Shen, T., Wang, Z., Chen, W., Yin, K., Li, D., Litany, O., Gojcic, Z., and Fidler, S. (2022). Get3d: A generative model of high quality 3d textured shapes learned from images. Advances in Neural Information Processing Systems, 1, 2, 3.
Publiée
2025-04-07

##plugins.generic.recommendByAuthor.heading##

1 2 > >>