Sistemas bioaprendidos y bioreceptivos de materiales biocompuestos en Arquitectura

  • Yomna K. Abdallah
  • Alberto T. Estévez
  • Secil Afsar
Palavras-chave: Bioreceptive ; Materiais Biocompostos ; Biorremediação ; Cultura de Algas ; Impressão 3D ; Azulejos Impressos 3D ; Arquitectura Biodigital ; Sustentabilidade

Resumo

Biolearning define uma abordagem de design que ultrapassa as fronteiras do design de inspiração biológica para além da mera imitação. 

Referências

Abdallah, Y. K., & Estévez, A. T. (2023). Integrating Chlorella vulgaris and Monoraphidium contortum in Architectural Systems for the Biodegradation of Sulfamethoxazole from Wastewater. En D. S.-K. Ting & J. A. Stagner (Eds.), Nourishing Tomorrow: Clean Engineering and Nature-friendly Living. World Scientific.

Abdallah, Y. K. (2020). Bio Lab: Biosystems and Bioprocesses Workshop. Master of Biodigital Architecture and Genetics, 2020, ESARQ_UIC Barcelona, Universitat Internacional de Catalunya. Lectures on Biological Processes in Design, Construction; Histophysiology; Bioimaging and Mathematical Modelling.

Abdallah, Y. K., Estévez, A. T., Tantawy, D. E. D. M., Ibraheem, A. M., & Khalil, N. M. (2019). Employing Laccase-Producing Aspergillus sydowii NYKA 510 as a Cathodic Biocatalyst in Self-Sufficient Lighting Microbial Fuel Cell. Journal of Microbiology and Biotechnology, 29(12), 1861-1872.

Abisado, R. G., Benomar, S., Klaus, J. R., Dandekar, A. A., & Chandler, J. R. (2018). Bacterial Quorum Sensing and Microbial Community Interactions. mBio, 9(5).

Akhtar, N. (2004). Removal and recovery of nickel (II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies. Journal of Hazardous Materials, 108(1-2), 85-94.

Architectmagazine.com. (2022). http://www.architectmagazine.com/practice/bacteria-activated-wallpaper-that-generates-electricity [Recuperado 31 Agosto, 2022].

Birkhäuser, 2005. Genetic Programming and Evolvable Machines, 8(1), pp. 105-106.

Brand, A., & Gow, N. A. (2009). Mechanisms of hypha orientation of fungi. Current Opinion in Microbiology, 12(4), 350-357.

Castillo, J., Gennett, A., Estévez, A. T., & Abdallah, Y. K. (2021). Employing Columba livia Swarmal Patterns in Designing Self-Sufficient Photo Bioreactor of Chlorella spp Cultivation in Plaça de Catalunya. En J. A. Stagner & D. S-K. Ting (Eds.), Renewable Energy for Mitigating Climate Change. CRC Press, p. 16.

Castle, D. (2009). Miscellaneous Tactical Biopolitics: Art, Activism, and Technoscience. Leonardo Book Series. B. Costa & K. Philip (Eds.). MIT Press. The Quarterly Review of Biology, 84(3), pp. 321-322.

Chen, B., Ma, G., Zhu, Y., & Xia, Y. (2017). Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Scientific Reports, 7(1).

Codd, G. A. (1987). Immobilized micro-algae and cyanobacteria. Br. Phycol. Soc. Newslett. 24, 1-5.

Cruz, M., http://marcoscruzarchitect.blogspot.com/2017/10/bioreceptive-concrete-facades-design.html

Danilov, R. A., & Ekelund, N. G. A. (2001). Comparison of usefulness of threetypes of artificial substrata (glass, wood and plastic) when studyingsettlement patterns of periphyton in lakes of diferent trophic status. J. Microbiol. Methods, 45, 167-170.

Giannopoulou, E., Baquero, P., Warang, A., Orciuoli, A., Estévez, A. T., & Brun-Usan, M. A. (2019). Biological Pattern Based on Reaction-Diffusion Mechanism Employed as Fabrication Strategy for a Shell Structure. IOP Conference Series: Materials Science and Engineering, 471, p. 102053.

Ghosh, M., & Gaur, J. P. (1998). Current velocity and the establishment of stream algal periphyton communities. Aquat. Bot. 60, 1-10.

Jaafari, A. A. Q., Roznowski, V., Estévez, A. T., & Abdullah, Y. K. (2021). Self-Sufficient Bioelectricity Systems in Architecture: Employing Spirulina Platensis in Photosynthetic Microbial Fuel Cells for the Generation of Domestic and Urban Bioelectricity through a Diffusion-Limited Aggregation Pattern. Sustainable Engineering Technologies and Architectures, pp. 1-18.

Kikuta, J., & Ishii, M. (2012). Recent Advances in Intravital Imaging of Dynamic Biological Systems. Journal of Pharmacological Sciences, advpub, p.12R03CP.

Krawczyk, K., Dzwinel, W., & Yuen, D. A. (2003). Nonlinear development of bacterial colony modeled with cellular automata and agent objects. International Journal of Modern Physics C, 14(10), 1385-1404.

Lee, M. H., Wiedman, G., Park, S., Mustaev, A., Zhao, Y., & Perlin, D. S. (2017). A novel, tomographic imaging probe for rapid diagnosis of fungal keratitis. Medical Mycology, 56(7), 796-802.

Lundh, T. (2007). Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis Authors: Andreas Deutsch and Sabine Dormann.

Mayoral, E. (2012). Growing Architecture through Mycelium and Agricultural Waste. The International Journal of the Constructed Environment, 1(4), 87-132.

Microalgae immobilization: Current techniques and uses. https://www.researchgate.net/ publication/6222376_Microalgae_immobilization_Current_techniques_and_uses [Recuperado 28 Junio, 2022].

Mustafa, K. F., Prieto, A., & Ottele, M. (2021). The Role of Geometry on a Self-Sustaining Bio-Receptive Concrete Panel for Facade Application. Sustainability, 13(13), 7453.

Moreno-Garrido, I. (2008). Microalgae immobilization: Current techniques and uses. Bioresource Technology, 99(10), 3949-3964.

Ratliff, S. T. (2006). The Feynman Lectures on Physics - The Complete Audio Collection Richard P. Feynman, Perseus Books, 1998-2006. American Journal of Physics, 74(9), 846-847.

Robinson, P. K., Mak, A. L., & Trevan, M. D. (1986). Immobilized algae: a review. Process Biochemistry, 21, 122-127.

Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein expression in Escherichia coli: Advances and challenges. Frontiers in Microbiology, 5(172).

Sample, I. (2020). Scientists use stem cells from frogs to build first living robots. The Guardian. https://www.theguardian.com/science/2020/jan/13/scientists-use-stem-cellsfromfrogs-to-build-first-living-robots [Recuperado 2 Febrero, 2020].

Skotheim, J. M., & Mahadevan, L. (2005). Physical Limits and Design Principles for Plant and Fungal Movements. Science, 308(5726), 1308-1310.

Vasquez, E. S. L. & Vega, K. (2019). From plastic to biomaterials. Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers.

Veeger, M., Ottelé, M., & Prieto, A. (2021). Making bio receptive concrete: Formulation and testing of bio receptive concrete mixtures. Journal of Building Engineering, 44, 102545.

Vesely, P. (2006). Molecular biology of the cell. Garland Science Inc. (2002). Scanning, 26(3), pp.153-153.

Wei, L., Lin, X., Wang, M., & Huang, W. (2016). Low artificial anisotropy cellular automaton model and its applications to the cell-to-dendrite transition in directional solidification. Materials Discovery, 3, 17-28.

Wu, M., Roberts, J. W., Kim, S., Koch, D. L., & DeLisa, M.P. (2006). Collective Bacterial Dynamics Revealed Using a Three-Dimensional Population-Scale Defocused Particle Tracking Technique. Applied and Environmental Microbiology, 72(7), 4987-4994.
Publicado
2023-01-26
Como Citar
Abdallah, Y. K., T. Estévez, A., & Afsar, S. (2023). Sistemas bioaprendidos y bioreceptivos de materiales biocompuestos en Arquitectura. Cuadernos Del Centro De Estudios De Diseño Y Comunicación, (178). https://doi.org/10.18682/cdc.vi178.8637