Biomimetic approach for experimentation and digital fabrication with bio-based material: the lightness and resistance of the Agave Sisalana
Abstract
Bioinspiration in nature’s design strategies aligned with digital fabrication, have great relevance for problem solving with a focus on the systematic application of biological information for the emulation of natural elements. Currently, the possibilities are given by the latest technologies, production systems and the development of new structures and materials. This research explores the investigation of biology, the use of parametric computing and digital fabrication, including experiments with sustainable materials as inseparable dimensions of bioinspired design. Agave Sisalana fibers have excellent lightness and resistance properties provided by the structural pattern of cell walls and their material properties. Being presented as a natural system of biomimetic inspiration and bio-inspired material experimentation.
References
Akos, G. & Parsons, R. (2014). Grasshopper primer 3° ed. Studio Mode, LLC.
Aurenhammer, F. (1991). Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure. Institute fur Informationsverarbeitung Technische Universitat Graz, Schiet stattgasse 4a, Austria.
Araújo, R. (2015). Biomimética e artefatos para ambientes aquáticos – estratégias de leveza e resistência inspiradas na estrutura celular do agave. Ed. Novas Edições Acadêmicas, Omni Scriptum Publishing Group - Beau Bassin.
Ashby, M.; Johnson, K. (2011). Materiais e Design: Arte e Ciências da Seleção de Materiais do Design do Produto. 2. ed. Rio de Janeiro: Campus.
Baumeister, D. (2014). Biomimicry Resource Handbook. A seed of Best Practices. Ed. Biomimicry 3.8 - Missoula, Montana.
Benyus, J. (2003) Biomimética: Inovação inspirada pela natureza. Ed. Pensamento-Cultrix.
Bhushan, B.(2009). Lessons from nature – an overview. Disponível em: http://rsta.royalsocietypublishing.org
Byrne, G.; Dimitrov, D.; Monostori, L.; Teti, R.; Houten, F.; Wertheim, R. (2018). Biologicalisation: Biological Transformation in Manufacturing. CIRP Journal of Manufacturing Science and Technology. Volume 21, May 2018, Pages 1-32. https://doi.org/10.1016/j.cirpj.2018.03.003
Callister, W. (2000). Ciência e engenharia dos materiais – Uma introdução. 5ed. Rio de Janeiro, LTC Ed.
Carneiro, J. (2017). Caracterização de acessos de sisal usando descritores da planta e da fibra. Tese doutorado. Programa de pós-graduação em recursos genéticos vegetais - Universidade Estadual de Feira de Santana - BA.
Cohen, Y. & Reich, Y. (2016). Biomimetic Design Method for Innovation and Sustainability. Springer International Publishing - doi:10.1007/978-3-319-33997-9 - Switzerland.
Damodaram, R. (2018). Bio-Mimetic Design With 3d Printable Composites. Thesis Master of Science. South Dakota State University.
Daya, T. (2017). Facilitating Sustainable Material Decisions: A Case Study of 3D Printing Materials. Tese de doutorado. UC Berkeley Electronic Theses and Dissertations.
Gleich, A.; Pade, C.; Petschow, U.; Pissarskoi, E. (2002). Potentials and Trends in Biomimetics. Springer. New York.
Martin, A., Martins. M., Mattoso, L., Silva, O. (2009). Caracterização química e estrutural de fibra de sisal da variedade Agave Sisalana - Polímeros: Ciência e Tecnologia, vol. 19, nº 1, p. 40-46, SP
Müller, R.; Abaid, N.; Boreyko, J. B.; Fowlkes, C.; Goel, A. K.; Grimm, C.; Jung, S.; Kennedy, B.; Murphy, C.; Cushing, N. D.; Han, J.(2018). Biodiversifying Bioinspiration. Bioinspiration & Biomimetics - IOP Science, Volume 13, Number 5.
Mwaikambo, L. & Ansell, M. (2002). Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization. Journal of Applied Polymer Science, 84(12), 2222-2234. https://doi.org/10.1002/app.10460
Nowak, A. (2015). Application of Voronoi diagrams in contemporary architecture and town planning - Challenges of Modern Technology. vol. 6, no. 2. 30-34. Oxman, N.; Ortiz, C.; Gramazio, F.; Kohler, M. (2015). Computer-Aided Design. Elsevier, Volume 60.
Pauw I. (2015). Nature-Inspired Design - Strategies for Sustainable Product Development. PhD thesis Delft University of Technology, Delft, the Netherlands.
Rael, R. & Fratello, V. (2018). Printing Architecture - Innovate Recipes for 3D printing - of emerging objects. Princeton Architectural Press; Illustrated edition.
Rattes, R. (2015). Biomimética aplicada ao Metadesign: Geração de Máquinas Abstratas com base no estudo do Mandacaru. Dissertação para obtenção de Grau de Mestre em Design. Universidade Federal de Pernambuco. Recife.
Sapuan, S.M.; et al. (2006). Mechanical properties of woven banana fiber reinforced epoxy composites. Mat. Des., v. 27, pag. 689-693.
Schumacher, P. (2021 Maio) Patrik Schumacher on parametricism – ‘Let the style wars begin’ 2010. https://www.architectsjournal.co.uk/practice/culture/patrik-schumacher-on-parametricism-let-the-style-wars-begin
Soares, T. & Arruda, A. (2018). Novas estratégias da biomimética: as analogias no biodesign e na bioarquitetura. Mix Sustentável. Florianópolis. v.4 - n.1 - p.73-82 – março.
Taiz, L.; Zeiger, E. (2004). Fisiologia vegetal. Porto Alegre: Artmed
Tedeschi, A. (2014). AAD Algorithms-Aided Design. Parametric strategies using grasshopper. ed. Le Penseur. Wimmer, R.; Koddenberg, T.; Steyrer, B. (2015). 3D Printing and Wood. International Conference Wood Science and Engineering in the Third Millennium - ICWS, DOI: 10.13140/RG.2.1.2483.6563
Los autores/as que publiquen en esta revista ceden los derechos de autor y de publicación a "Cuadernos del Centro de Estudios de Diseño y Comunicación", Aceptando el registro de su trabajo bajo una licencia de atribución de Creative Commons, que permite a terceros utilizar lo publicado siempre que de el crédito pertinente a los autores y a esta revista.